• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

K-groups: A Generalization of K-means by Energy Distance

Li, Songzi 29 April 2015 (has links)
No description available.
2

Mixed groups with decomposition bases and global k-groups

Mathews, Chad, Ullery, William D. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.30).
3

Tropical geometry and algebraic cycles / トロピカル幾何学と代数的サイクル

Mikami, Ryota 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22976号 / 理博第4653号 / 新制||理||1669(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 入谷 寛, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
4

Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theory

Valerio, Piere Alexander Rodriguez 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
5

Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theory

Piere Alexander Rodriguez Valerio 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
6

Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theory

Ordinola, David Martín Carbajal 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) &rarr; Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 &le; n &le; 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a &isin; F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b &isin; F× - {1}, a /= b. Então temos a sequência exata TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZFx)&sigma; F×)&sigma; &rarr; K2(F) &rarr; 0 onde (F× &#8855; ZF×)&sigma; := (F×; &#8855; ZF×)/<a &#8855; b + b &#8855; a | a, b &isin; F×> e TorZ1 (&mu; (F); &mu; (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (&mu; (F); &mu; (F)) se char(F) &ne; 2 e &mu; 2 &infin; (F) é finito e é TorZ1 (&mu; (F); &mu; (F)) caso contrário. O homomorfismo p(F) &rarr; (F× &#8855; ZF×) &sigma; é definido por [a] &rarr; a &#8855; (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) &rarr; Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a &isin; F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b &isin; F×, a =/ b. Then we have the exact sequence TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZF×)$sigma; &rarr; K2(F) &rarr; 0 where (F× &#8855; ZF×)&sigma; := (F× &#8855; ZF×) / a &38855; b +b &#8855; a | a; b &isin; F× and TorZ1(&mu;(F);&mu;(F)) is the unique non trivial extension of Z=2Z by TorZ1 (&mu; (F); &mu; (F)) if char(F) =/ 2 and &mu;2 &infin; is finite and is TorZ1 (&mu; (F);&mu; (F)) otherwise. The homomorphism p(F) &rarr; (F×ZF×)%sigma; is defined by [a] &rarr; a &#8855; (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.
7

Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theory

David Martín Carbajal Ordinola 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) &rarr; Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 &le; n &le; 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a &isin; F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b &isin; F× - {1}, a /= b. Então temos a sequência exata TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZFx)&sigma; F×)&sigma; &rarr; K2(F) &rarr; 0 onde (F× &#8855; ZF×)&sigma; := (F×; &#8855; ZF×)/<a &#8855; b + b &#8855; a | a, b &isin; F×> e TorZ1 (&mu; (F); &mu; (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (&mu; (F); &mu; (F)) se char(F) &ne; 2 e &mu; 2 &infin; (F) é finito e é TorZ1 (&mu; (F); &mu; (F)) caso contrário. O homomorfismo p(F) &rarr; (F× &#8855; ZF×) &sigma; é definido por [a] &rarr; a &#8855; (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) &rarr; Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) &rarr; t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a &isin; F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b &isin; F×, a =/ b. Then we have the exact sequence TorZ1 (&mu; (F), &mu; (F)) ~ &rarr; Kind3 (F) &rarr; p(F) &rarr; (F× &#8855; ZF×)$sigma; &rarr; K2(F) &rarr; 0 where (F× &#8855; ZF×)&sigma; := (F× &#8855; ZF×) / a &38855; b +b &#8855; a | a; b &isin; F× and TorZ1(&mu;(F);&mu;(F)) is the unique non trivial extension of Z=2Z by TorZ1 (&mu; (F); &mu; (F)) if char(F) =/ 2 and &mu;2 &infin; is finite and is TorZ1 (&mu; (F);&mu; (F)) otherwise. The homomorphism p(F) &rarr; (F×ZF×)%sigma; is defined by [a] &rarr; a &#8855; (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.
8

Le K1 des courbes sur les corps globaux : conjecture de Bloch et noyaux sauvages / On K1 of Curves over Global Fields : Bloch’s Conjecture and Wild Kernels

Laske, Michael 19 November 2009 (has links)
Pour X une courbe sur un corps global k, lisse, projective et géométriquement connexe, nous déterminons la Q-structure du groupe de Quillen K1(X) : nous démontrons que dimQ K1(X) ? Q =2r, où r désigne le nombre de places archimédiennes de k (y compris le cas r = 0 pour un corps de fonctions). Cela con?rme une conjecture de Bloch annoncée dans les années 1980. Dans le langage de la K-théorie de Milnor, que nous dé?nissons pour les variétés algébriques via les groupes de Somekawa, le premier K-groupe spécial de Milnor SKM1 (X) est de torsion. Pour la preuve, nous développons une théorie des hauteurs applicable aux K-groupes de Milnor, et nous généralisons l’approche de base de facteurs de Bass-Tate. Une structure plus ?ne de SKM 1 (X) émerge en localisant le corps de base k, et une description explicite de la décomposition correspondante est donnée. En particulier, nous identi?ons un sous-groupe WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) pour chaque entier rationnel l, nommé noyau sauvage, dont nous croyons qu’il est ?ni. / For a smooth projective geometrically connected curve X over a global ?eld k, we determine the Q-structure of its ?rst Quillen K-group K1(X) by showing that dimQ K1(X) ? Q =2r, where r denotes the number of archimedean places of k (including the case r = 0 for k a function ?eld). This con?rms a conjecture of Bloch. In the language of Milnor K-theory, which we de?ne for varieties via Somekawa groups, the ?rst special Milnor K-group SKM 1 (X) is torsion. For the proof, we develop a theory of heights applicable to Milnor K-groups, and generalize the factor basis approach of Bass-Tate. A ?ner structure of SKM 1 (X) emerges when localizing the ground ?eld k, and we give an explicit description of the resulting decomposition. In particular, we identify a potentially ?nite subgroup WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) for each rational prime l, named wild kernel.

Page generated in 0.032 seconds