Spelling suggestions: "subject:"cgroups"" "subject:"3groups""
1 |
K-groups: A Generalization of K-means by Energy DistanceLi, Songzi 29 April 2015 (has links)
No description available.
|
2 |
Mixed groups with decomposition bases and global k-groupsMathews, Chad, Ullery, William D. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.30).
|
3 |
Tropical geometry and algebraic cycles / トロピカル幾何学と代数的サイクルMikami, Ryota 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22976号 / 理博第4653号 / 新制||理||1669(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 入谷 寛, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
4 |
Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theoryValerio, Piere Alexander Rodriguez 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
|
5 |
Regulador de Borel na K-teoria algébrica / Borel regulator in algebraic k-theoryPiere Alexander Rodriguez Valerio 21 November 2018 (has links)
Neste trabalho,nos apresentamos a K-teoria algébrica a qual é um ramo da álgebra que associa para cada anel comutativo comunidade R, uma sequencia de grupos abelianos ditos de n-ésimos K-grupos do anel R, denotada por Kn(R) . A meados da década de 1950,Alexander Grothendieck da a definição do K0(R) de um anel R. Em 1962, Hyman Bass e Stephen Schanuel apresenta a primeira definição adequada do K1(R) de um anel R. Em 1970, Daniel Quillen da uma definição geral dos K-grupos de um anel R a partir da +- construção do espaço classificante BGL(R). Nosso interesse é o estudo dos K-grupos sobre o anel de inteiros OF sobre um corpo numérico F. Usando alguns resultados de homologia dos grupos lineares, neste trabalho daremos a definição do mapa regulador de Borel. / In this paper,we present the algebraic K-theory,which is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R, denoted by Kn(R). The mid-1950s, Alexander Grothendieck gave a definition of the K0(R) of any ring R. In1962, Hyman Bass and Stephen Schanuel gave the first adequate definition of K1 of any ring R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +- construction of the classifying space BGL(R). Our interest is the study of the K-groups on the ring of integers OF over a number field F. Using some results of homology of linear groups, this work will give the definition of Borel\'s regulator map.
|
6 |
Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theoryOrdinola, David Martín Carbajal 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) → Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 ≤ n ≤ 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) → t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a ∈ F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b ∈ F× - {1}, a /= b. Então temos a sequência exata TorZ1 (μ (F), μ (F)) ~ → Kind3 (F) → p(F) → (F× ⊗ ZFx)σ F×)σ → K2(F) → 0 onde (F× ⊗ ZF×)σ := (F×; ⊗ ZF×)/<a ⊗ b + b ⊗ a | a, b ∈ F×> e TorZ1 (μ (F); μ (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (μ (F); μ (F)) se char(F) ≠ 2 e μ 2 ∞ (F) é finito e é TorZ1 (μ (F); μ (F)) caso contrário. O homomorfismo p(F) → (F× ⊗ ZF×) σ é definido por [a] → a ⊗ (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) → Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) → t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a ∈ F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b ∈ F×, a =/ b. Then we have the exact sequence TorZ1 (μ (F), μ (F)) ~ → Kind3 (F) → p(F) → (F× ⊗ ZF×)$sigma; → K2(F) → 0 where (F× ⊗ ZF×)σ := (F× ⊗ ZF×) / a &38855; b +b ⊗ a | a; b ∈ F× and TorZ1(μ(F);μ(F)) is the unique non trivial extension of Z=2Z by TorZ1 (μ (F); μ (F)) if char(F) =/ 2 and μ2 ∞ is finite and is TorZ1 (μ (F);μ (F)) otherwise. The homomorphism p(F) → (F×ZF×)%sigma; is defined by [a] → a ⊗ (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.
|
7 |
Sequência exata de Bloch-Wigner e K-teoria algébrica / The Bloch-Wigner exact sequence and algebraic K-theoryDavid Martín Carbajal Ordinola 14 September 2016 (has links)
A K-teoria algébrica é um ramo da álgebra que associa para cada anel com unidade R, uma sequência de grupos abelianos chamados os n-ésimos K-grupos de R. Em 1970, Daniel Quillen dá uma definição geral dos K-grupos de um anel qualquer R a partir da +-construção do espaço classificante BGL(R). Por outro lado, considerando R um anel comutativo, obtém-se também a definição dos K-grupos de Milnor KMn (R). Usando o produto dos K-grupos de Quillen e Milnor e suas estruturas anti-comutativas, definimos o seguinte homomorfismo tn : KMn (R) → Kn(R): Mostraremos nesta dissertação que se R é um anel local com ideal maximal m tal que R / m é um corpo infinito, então esse homomorfismo é um isomorfismo para 0 ≤ n ≤ 2. Em geral tn nem sempre é injetor ou sobrejetor. Por exemplo quando n = 3, sabe-se que t3 não é sobrejetor e definimos a parte indecomponível de K3(R) como sendo o grupo Kind3 (R) := coker (KM3 (R) → t3 K3(R)). Usando alguns resultados de homologia dos grupos lineares, nesta dissertação mostraremos a existência da sequência exata de Bloch-Wigner para corpos infinitos. Esta sequência dá uma descrição explícita da parte indecomponível do terceiro K-grupo de um corpo infinito. TEOREMA (Sequência exata de Bloch-Wigner). Seja F um corpo infinito e seja p(F) o grupo de pre-Bloch de F, isto é, o grupo quociente do grupo abeliano livre gerado pelos símbolos [a], a ∈ F×, pelo subgrupo gerado por elementos da forma [a] - [b] + [b/a] - [1-a-1 /1-b-1] + [1-a /1-b] com a, b ∈ F× - {1}, a /= b. Então temos a sequência exata TorZ1 (μ (F), μ (F)) ~ → Kind3 (F) → p(F) → (F× ⊗ ZFx)σ F×)σ → K2(F) → 0 onde (F× ⊗ ZF×)σ := (F×; ⊗ ZF×)/<a ⊗ b + b ⊗ a | a, b ∈ F×> e TorZ1 (μ (F); μ (F)) ~ é a única extensão não trivial de Z=2Z por TorZ1 (μ (F); μ (F)) se char(F) ≠ 2 e μ 2 ∞ (F) é finito e é TorZ1 (μ (F); μ (F)) caso contrário. O homomorfismo p(F) → (F× ⊗ ZF×) σ é definido por [a] → a ⊗ (1-a). O estudo da sequência exata de Bloch-Wigner é justificada pela relação entre o segundo e terceiro K-grupo de um corpo F. / The algebraic K-theory is a branch of algebra that associates to any ring with unit R a sequence of abelian groups called n-th K-groups of R. In 1970, Daniel Quillen gave a general definition of K-groups of any ring R using the +-construction of the classifying space BGL(R). On the other hand, if we consider a commutative ring R, we can define the Milnors K-groups, KMn (R), of R. Using the product of the Quillen and Milnors K-groups and their anti-commutative structure, we define a natural homomorphism tn : KMn (R) → Kn(R): In this dissertation, we show that if R is a local ring with maximal ideal m such that R=m is infinite, then this map is an isomorphism for 0<= n<= 2. But in general tn is not injective nor is surjective. For example when n = 3, we know that t3 is not surjective and define the indecomposable part of K3(R) as the group Kind3 (R) := coker (KM3 (R) → t3 K3(R)). Using some results about the homology of linear groups, in this dissertation we will prove the Bloch-Wigner exact sequence over infinite fields. This exact sequence gives us a precise description of the indecomposable part of the third K-group of an infinite field. THEOREM (Bloch-Wigner exact sequence). Let F be an infinite field and let p(F) be the pre-Bloch group of F, that is, the quotient group of the free abelian group generated by symbols [a], a ∈ F× - [1}, by the subgroup generated by the elements of the form [a][b]+ b/a][ 1-a-1/1-b-1]+ [1-a/1-b] with a; b ∈ F×, a =/ b. Then we have the exact sequence TorZ1 (μ (F), μ (F)) ~ → Kind3 (F) → p(F) → (F× ⊗ ZF×)$sigma; → K2(F) → 0 where (F× ⊗ ZF×)σ := (F× ⊗ ZF×) / a &38855; b +b ⊗ a | a; b ∈ F× and TorZ1(μ(F);μ(F)) is the unique non trivial extension of Z=2Z by TorZ1 (μ (F); μ (F)) if char(F) =/ 2 and μ2 ∞ is finite and is TorZ1 (μ (F);μ (F)) otherwise. The homomorphism p(F) → (F×ZF×)%sigma; is defined by [a] → a ⊗ (1-a). As it is shown, the study of the Bloch-Wigner exact sequence is also justified by the relation between the second and third K-group of a field F.
|
8 |
Le K1 des courbes sur les corps globaux : conjecture de Bloch et noyaux sauvages / On K1 of Curves over Global Fields : Bloch’s Conjecture and Wild KernelsLaske, Michael 19 November 2009 (has links)
Pour X une courbe sur un corps global k, lisse, projective et géométriquement connexe, nous déterminons la Q-structure du groupe de Quillen K1(X) : nous démontrons que dimQ K1(X) ? Q =2r, où r désigne le nombre de places archimédiennes de k (y compris le cas r = 0 pour un corps de fonctions). Cela con?rme une conjecture de Bloch annoncée dans les années 1980. Dans le langage de la K-théorie de Milnor, que nous dé?nissons pour les variétés algébriques via les groupes de Somekawa, le premier K-groupe spécial de Milnor SKM1 (X) est de torsion. Pour la preuve, nous développons une théorie des hauteurs applicable aux K-groupes de Milnor, et nous généralisons l’approche de base de facteurs de Bass-Tate. Une structure plus ?ne de SKM 1 (X) émerge en localisant le corps de base k, et une description explicite de la décomposition correspondante est donnée. En particulier, nous identi?ons un sous-groupe WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) pour chaque entier rationnel l, nommé noyau sauvage, dont nous croyons qu’il est ?ni. / For a smooth projective geometrically connected curve X over a global ?eld k, we determine the Q-structure of its ?rst Quillen K-group K1(X) by showing that dimQ K1(X) ? Q =2r, where r denotes the number of archimedean places of k (including the case r = 0 for k a function ?eld). This con?rms a conjecture of Bloch. In the language of Milnor K-theory, which we de?ne for varieties via Somekawa groups, the ?rst special Milnor K-group SKM 1 (X) is torsion. For the proof, we develop a theory of heights applicable to Milnor K-groups, and generalize the factor basis approach of Bass-Tate. A ?ner structure of SKM 1 (X) emerges when localizing the ground ?eld k, and we give an explicit description of the resulting decomposition. In particular, we identify a potentially ?nite subgroup WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) for each rational prime l, named wild kernel.
|
Page generated in 0.0654 seconds