Spelling suggestions: "subject:"nearest neighborhood rule"" "subject:"knearest neighborhood rule""
1 |
Classification of uncertain data in the framework of belief functions : nearest-neighbor-based and rule-based approaches / Classification des données incertaines dans le cadre des fonctions de croyance : la métode des k plus proches voisins et la méthode à base de règlesJiao, Lianmeng 26 October 2015 (has links)
Dans de nombreux problèmes de classification, les données sont intrinsèquement incertaines. Les données d’apprentissage disponibles peuvent être imprécises, incomplètes, ou même peu fiables. En outre, des connaissances spécialisées partielles qui caractérisent le problème de classification peuvent également être disponibles. Ces différents types d’incertitude posent de grands défis pour la conception de classifieurs. La théorie des fonctions de croyance fournit un cadre rigoureux et élégant pour la représentation et la combinaison d’une grande variété d’informations incertaines. Dans cette thèse, nous utilisons cette théorie pour résoudre les problèmes de classification des données incertaines sur la base de deux approches courantes, à savoir, la méthode des k plus proches voisins (kNN) et la méthode à base de règles.Pour la méthode kNN, une préoccupation est que les données d’apprentissage imprécises dans les régions où les classes de chevauchent peuvent affecter ses performances de manière importante. Une méthode d’édition a été développée dans le cadre de la théorie des fonctions de croyance pour modéliser l’information imprécise apportée par les échantillons dans les régions qui se chevauchent. Une autre considération est que, parfois, seul un ensemble de données d’apprentissage incomplet est disponible, auquel cas les performances de la méthode kNN se dégradent considérablement. Motivé par ce problème, nous avons développé une méthode de fusion efficace pour combiner un ensemble de classifieurs kNN couplés utilisant des métriques couplées apprises localement. Pour la méthode à base de règles, afin d’améliorer sa performance dans les applications complexes, nous étendons la méthode traditionnelle dans le cadre des fonctions de croyance. Nous développons un système de classification fondé sur des règles de croyance pour traiter des informations incertains dans les problèmes de classification complexes. En outre, dans certaines applications, en plus de données d’apprentissage, des connaissances expertes peuvent également être disponibles. Nous avons donc développé un système de classification hybride fondé sur des règles de croyance permettant d’utiliser ces deux types d’information pour la classification. / In many classification problems, data are inherently uncertain. The available training data might be imprecise, incomplete, even unreliable. Besides, partial expert knowledge characterizing the classification problem may also be available. These different types of uncertainty bring great challenges to classifier design. The theory of belief functions provides a well-founded and elegant framework to represent and combine a large variety of uncertain information. In this thesis, we use this theory to address the uncertain data classification problems based on two popular approaches, i.e., the k-nearest neighbor rule (kNN) andrule-based classification systems. For the kNN rule, one concern is that the imprecise training data in class over lapping regions may greatly affect its performance. An evidential editing version of the kNNrule was developed based on the theory of belief functions in order to well model the imprecise information for those samples in over lapping regions. Another consideration is that, sometimes, only an incomplete training data set is available, in which case the ideal behaviors of the kNN rule degrade dramatically. Motivated by this problem, we designedan evidential fusion scheme for combining a group of pairwise kNN classifiers developed based on locally learned pairwise distance metrics.For rule-based classification systems, in order to improving their performance in complex applications, we extended the traditional fuzzy rule-based classification system in the framework of belief functions and develop a belief rule-based classification system to address uncertain information in complex classification problems. Further, considering that in some applications, apart from training data collected by sensors, partial expert knowledge can also be available, a hybrid belief rule-based classification system was developed to make use of these two types of information jointly for classification.
|
2 |
Topics in random matrices and statistical machine learning / ランダム行列と統計的機械学習についてSushma, Kumari 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21327号 / 理博第4423号 / 新制||理||1635(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 COLLINS,Benoit Vincent Pierre, 教授 泉 正己, 教授 日野 正訓 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
Page generated in 0.3483 seconds