• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 843
  • 316
  • 175
  • 113
  • 44
  • 41
  • 27
  • 24
  • 20
  • 18
  • 12
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1900
  • 1140
  • 414
  • 375
  • 373
  • 299
  • 262
  • 174
  • 173
  • 172
  • 171
  • 170
  • 170
  • 167
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Multivariable process control in high temperature and high pressure environment using non-intrusive multi sensor data fusion

Nygaard, Olav Gerhard Haukenes January 2006 (has links)
The main objective of this thesis is to use available knowledge about a process and combine this with measurement data from the same process to extract more information about the process. The combination of knowledge and measurement data is referred to as Multi Sensor Data Fusion, MSDF. This added information is then used to control the process towards a specified goal. The process studied in this thesis is the process of drilling wells in a petroleum reservoir, while the oil is flowing from the reservoir. In the petroleum industry, this is defined as underbalanced drilling (UBD), where the bottom hole pressure (BHP) in the well is below the pore pressure in the reservoir. Detailed knowledge of the process is of paramount importance when using multi sensor data fusion. Due to this, various process modelling efforts are examined and evaluated, from simple relations between parameters to a finite-element approach of modelling the fluid flow in the well during drilling. Several sensors are used in the various cases, and existing sensors such as pressure sensors and flow sensors are the main data source in the analysis. Future scenario with sensors such as pressure arrays and non-intrusive multiphase flow meters are evaluated. In addition, new positions of existing sensor systems are discussed. The methods available for fusing the knowledge of the process represented as models together with the available data is ranging from artificial intelligent methods such as neural networks, to methods incorporating statistical analysis such as various Kalman filters. History matching techniques using gradient techniques are also examined. The migration of reservoir fluids into the well during UBD influences the BHP of the well. The results in the thesis show that this reservoir influx can be calculated by estimating some of the important reservoir parameters such as reservoir pore pressure or reservoir permeability. These reservoir parameters can be estimated most efficiently by performing an MSDF using a detailed nonlinear model of the well and reservoir dynamic behaviour together with real-time measurements of the fluid flow parameters such as fluid temperature, fluid pressure and fluid flow rates. The unscented Kalman filter shows the best performance when evaluating both estimation accuracy and computational requirements. Regarding available instrumentation for use during UBD, the analysis shows that there is a major potential in introducing new sensors. As new data transmission methods are emerging and making data from sensors distributed along the drillstring available, this can generate a shift in paradigm regarding real-time analysis of reservoir properties during drilling. Controlling the process is an important usage of the information gained from the MSDF analysis. Various control methods for controlling the most important process variables are examined and evaluated. The results show that acceptable pressure control can be obtained when using the choke valve opening as the primary control parameter. However, the choke valve operation has to be closely coordinated with drilling fluid flow rate adjustments. The choke valve opening control is able to compensate for pressure variations during the whole drilling operation. A suggested nonlinear model predictive control algorithm gives best results when looking at the control accuracy, and can easily be expanded to handle multiple control inputs and system constraints. This control algorithm uses a detailed model of the well and reservoir dynamics. The Levenberg-Marquardt algorithm is used to calculate the optimal future control variables. The main drawback of the control algorithm is computational burden. A linear control algorithm, which also is evaluated, uses less computational resources, but has less control accuracy and is more difficult to expand into a multivariable control system. Recommendations for further work are to expand the suggested model predictive control algorithm to handle more control inputs, while reducing the computational burden by incorporating low-order models for describing the future behaviour of the well.
402

Local Modeling Of The Ionospheric Vertical Total Electron Content (vtec) Using Particle Filter

Aghakarimi, Armin 01 September 2012 (has links) (PDF)
ABSTRACT LOCAL MODELING OF THE IONOSPHERIC VERTICAL TOTAL ELECTRON CONTENT (VTEC) USING PARTICLE FILTER Aghakarimi, Armin M.Sc., Department of Geodetic and Geographic Information Technologies Supervisor: Prof. Dr. Mahmut Onur Karslioglu September 2012, 98 pages Ionosphere modeling is an important field of current studies because of its influences on the propagation of the electromagnetic signals. Among the various methods of obtaining ionospheric information, Global Positioning System (GPS) is the most prominent one because of extensive stations distributed all over the world. There are several studies in the literature related to the modeling of the ionosphere in terms of Total Electron Content (TEC). However, most of these studies investigate the ionosphere in the global and regional scales. On the other hand, complex dynamic of the ionosphere requires further studies in the local structure of the TEC distribution. In this work, Particle filter has been used for the investigation of local character of the ionosphere VTEC. Besides, standard Kalman filter as an effective method for optimal state estimation is applied to the same data sets to compare the corresponding results with results of Particle filter. The comparison shows that Particle filter indicates better performance than the standard Kalman filter especially during the geomagnetic storm. MATLAB&copy / R2011 software has been used for programing all processes and algorithms of the study.
403

Event-Based Sensor Data Scheduling : Trade-Off Between Communication Rate and Estimation Quality

Wu, Junfeng, Jia, Qing-Shan, Johansson, Karl Henrik, Shi, Ling January 2013 (has links)
We consider sensor data scheduling for remote state estimation. Due to constrained communication energy and bandwidth, a sensor needs to decide whether it should send the measurement to a remote estimator for further processing. We propose an event-based sensor data scheduler for linear systems and derive the corresponding minimum squared error estimator. By selecting an appropriate eventtriggering threshold, we illustrate how to achieve a desired balance between the sensor-to-estimator communication rate and the estimation quality. Simulation examples are provided to demonstrate the theory. / <p>QC 20130318</p>
404

Fault monitoring in hydraulic systems using unscented Kalman filter

Sepasi, Mohammad 05 1900 (has links)
Condition monitoring of hydraulic systems is an area that has grown substantially in the last few decades. This thesis presents a scheme that automatically generates the fault symptoms by on-line processing of raw sensor data from a real test rig. The main purposes of implementing condition monitoring in hydraulic systems are to increase productivity, decrease maintenance costs and increase safety. Since such systems are widely used in industry and becoming more complex in function, reliability of the systems must be supported by an efficient monitoring and maintenance scheme. This work proposes an accurate state space model together with a novel model-based fault diagnosis methodology. The test rig has been fabricated in the Process Automation and Robotics Laboratory at UBC. First, a state space model of the system is derived. The parameters of the model are obtained through either experiments or direct measurements and manufacturer specifications. To validate the model, the simulated and measured states are compared. The results show that under normal operating conditions the simulation program and real system produce similar state trajectories. For the validated model, a condition monitoring scheme based on the Unscented Kalman Filter (UKF) is developed. In simulations, both measurement and process noises are considered. The results show that the algorithm estimates the iii system states with acceptable residual errors. Therefore, the structure is verified to be employed as the fault diagnosis scheme. Five types of faults are investigated in this thesis: loss of load, dynamic friction load, the internal leakage between the two hydraulic cylinder chambers, and the external leakage at either side of the actuator. Also, for each leakage scenario, three levels of leakage are investigated in the tests. The developed UKF-based fault monitoring scheme is tested on the practical system while different fault scenarios are singly introduced to the system. A sinusoidal reference signal is used for the actuator displacement. To diagnose the occurred fault in real time, three criteria, namely residual moving average of the errors, chamber pressures, and actuator characteristics, are considered. Based on the presented experimental results and discussions, the proposed scheme can accurately diagnose the occurred faults.
405

Estimation Strategies for Constrained and Hybrid Dynamical Systems

Parish, Julie Marie Jones 2011 August 1900 (has links)
The estimation approaches examined in this dissertation focus on manipulating system dynamical models to allow the well-known form of the continuous-discrete extended Kalman filter (CDEKF) to accommodate constrained and hybrid systems. This estimation algorithm filters sequential discrete measurements for nonlinear continuous systems modeled with ordinary differential equations. The aim of the research is to broaden the class of systems for which this common tool can be easily applied. Equality constraints, holonomic or nonholonomic, or both, are commonly found in the system dynamics for vehicles, spacecraft, and robotics. These systems are frequently modeled with differential algebraic equations. In this dissertation, three tools for adapting the dynamics of constrained systems for implementation in the CDEKF are presented. These strategies address (1) constrained systems with quasivelocities, (2) kinematically constrained redundant coordinate systems, and (3) systems for which an equality constraint can be broken. The direct linearization work for constrained systems modeled with quasi-velocities is demonstrated to be particularly useful for systems subject to nonholonomic constraints. Concerning redundant coordinate systems, the "constraint force" perspective is shown to be an effective approximation for facilitating implementation of the CDEKF while providing similar performance to that of the fully developed estimation scheme. For systems subject to constraint violation, constraint monitoring methods are presented that allow the CDEKF to autonomously switch between constrained and unconstrained models. The efficacy of each of these approaches is shown through illustrative examples. Hybrid dynamical systems are those modeled with both finite- and infinite-dimensional coordinates. The associated governing equations are integro-partial differential equations. As with constrained systems, these governing equations must be transformed in order to employ the CDEKF. Here, this transformation is accomplished through two finite-dimensional representations of the infinite-dimensional coordinate. The application of these two assumed modes methods to hybrid dynamical systems is outlined, and the performance of the approaches within the CDEKF are compared. Initial simulation results indicate that a quadratic assumed modes approach is more advantageous than a linear assumed modes approach for implementation in the CDEKF. The dissertation concludes with a direct estimation methodology that constructs the Kalman filter directly from the system kinematics, potential energy, and measurement model. This derivation provides a straightforward method for building the CDEKF for discrete systems and relates these direct estimation ideas to the other work presented throughout the dissertation. Together, this collection of estimation strategies provides methods for expanding the class of systems for which a proven, well-known estimation algorithm, the extended Kalman filter, can be applied. The accompanying illustrative examples and simulation results demonstrate the utility of the methods proposed herein.
406

Spacecraft Attitude Estimation Integrating the Q-Method into an Extended Kalman Filter

Ainscough, Thomas 16 September 2013 (has links)
A new algorithm is proposed that smoothly integrates the nonlinear estimation of the attitude quaternion using Davenport's q-method and the estimation of non-attitude states within the framework of an extended Kalman filter. A modification to the q-method and associated covariance analysis is derived with the inclusion of an a priori attitude estimate. The non-attitude states are updated from the nonlinear attitude estimate based on linear optimal Kalman filter techniques. The proposed filter is compared to existing methods and is shown to be equivalent to second-order in the attitude update and exactly equivalent in the non-attitude state update with the Sequential Optimal Attitude Recursion filter. Monte Carlo analysis is used in numerical simulations to demonstrate the validity of the proposed approach. This filter successfully estimates the nonlinear attitude and non-attitude states in a single Kalman filter without the need for iterations.
407

Informative Path Planning and Sensor Scheduling for Persistent Monitoring Tasks

Jawaid, Syed Talha January 2013 (has links)
In this thesis we consider two combinatorial optimization problems that relate to the field of persistent monitoring. In the first part, we extend the classic problem of finding the maximum weight Hamiltonian cycle in a graph to the case where the objective is a submodular function of the edges. We consider a greedy algorithm and a 2-matching based algorithm, and we show that they have approximation factors of 1/2+κ and max{2/(3(2+κ)),(2/3)(1-κ)} respectively, where κ is the curvature of the submodular function. Both algorithms require a number of calls to the submodular function that is cubic to the number of vertices in the graph. We then present a method to solve a multi-objective optimization consisting of both additive edge costs and submodular edge rewards. We provide simulation results to empirically evaluate the performance of the algorithms. Finally, we demonstrate an application in monitoring an environment using an autonomous mobile sensor, where the sensing reward is related to the entropy reduction of a given a set of measurements. In the second part, we study the problem of selecting sensors to obtain the most accurate state estimate of a linear system. The estimator is taken to be a Kalman filter and we attempt to optimize the a posteriori error covariance. For a finite time horizon, we show that, under certain restrictive conditions, the problem can be phrased as a submodular function optimization and that a greedy approach yields a 1-1/(e^(1-1/e))-approximation. Next, for an infinite time horizon, we characterize the exact conditions for the existence of a schedule with bounded estimation error covariance. We then present a scheduling algorithm that guarantees that the error covariance will be bounded and that the error will die out exponentially for any detectable LTI system. Simulations are provided to compare the performance of the algorithm against other known techniques.
408

Reglering och navigering av en undervattensfarkostmed hjälp av GPS-utrustade bojar / Control and navigation of an underwater vehicle with the aid of GPS-equipped buoys

Hedmo, Erik January 2008 (has links)
Examensarbetets mål är att hitta möjligheter till förbättring av navigeringsprestandahos en undervattensfarkost med hjälp av bojar utrustade med GPS. Dessabojar skickar positionsdata till farkosten som med hjälp av ett extended kalmanfilter(EKF) integrerar denna information till att förbättra sin navigering.Ett ytterligare mål med examensarbetet har även varit att skapa en simuleringsmiljöför en liten farkost, där eventuella nya algoritmer eller sensorer, vidframtida behov, på ett smidigt sätt skall kunna integreras för utprovning. Dettahar i arbetet inneburit en anpassning av en fysikalisk 6-DOF modell till enliten undervattensfarkost samt en reglerdesign för detta system i form av kaskadkoppladePI-regulatorer och parameterstyrning. Simuleringsmiljön är skapad medhjälp av Matlab och Simulink. / The goal of this master thesis is to find improvements of performance in the navigationof an underwater vehicle with the aid of buoys equipped with GPS receievers.These buoys send positioning data to the vehicle which by using an extendedkalman filter (EKF) fuses this information in order to improve its navigation ability.Another goal with the master thesis has been to create a simulation environmentfor a small underwater vehicle, in which new algorithms or sensors shouldbe able to be integrated easily for various testing. In this assignment this hasresulted in an adaptation of a 6-DOF model to a small underwater vehicle as wellas a regulator design for this system by means of cascade coupled PI regulatorsand gain scheduling. The simulation environment is created within Matlab andSimulink.
409

Fuel Level Estimation for Heavy Vehicles using a Kalman Filter

Wallebäck, Peter January 2008 (has links)
The object with this project is to develop a more accurate way to measure the level in the fuel tank in Scaniavehicles. The level should be displayed for the driver and a warning system be implemented to make the driveraware if the fuel level is too low. Furthermore a main goal is to develop an estimation of the distance that thevehicle could travel before refueling is needed.The fuel level estimation system is modeled using Matlab Simulink and simulated with measurement datacollected from real driving scenarios. After evaluating the system it is implemented in one of the electricalcontrol units located on a test vehicle which communicates with other systems. After implementation more testsare performed with the test vehicle to verify that the same functionality achieved during simulations is achievedusing the system implemented in a vehicle.The fuel level estimated with a KF (Kalman filter) that uses fuel consumption and level measurement results ingood performance. A more stable level estimate is achieved and a negative elevation of the estimate most of thetime, as a result of fuel use. Compared to the method Scania vehicles estimate their fuel level with today thenew level estimate is more steady and not that easily affected by fuel movements. The KF is more demanding interms of memory allocation, processor speed and inputs needed, which has to be considered when comparingboth methods. Another disadvantage with the KF is that it is dependent on the samples from the fuel levelsensor to get an initial estimate during startup.Furthermore the KF is easily expanded with more inputs that use information from other sensors on other parts of the vehicle.
410

Detection and Tracking of People from Laser Range Data

Mashad Nemati, Hassan January 2010 (has links)
In this thesis report, some of the most promising techniques, in the field of intelligent vehicles and mobile robotics, for detection and tracking of moving objects in an indoor environment are investigated. Kalman filter (KF), extended Kalman filter (EKF), and particle filters (PF) based techniques for the tracking of people are implemented and evaluated. A heuristic method is then proposed to improve the performance of the EKF based tracking in situations where moving objects are hidden by obstacles. The proposed method is based on points of maximum uncertainty (PMU) in occlusion situations and its complexity and accuracy is compared with PF method. The EKF, PF and PMU based methods are examined and compared using experimental data which are extracted by a laser range finder in an indoor environment with predefined hinders and people as the moving objects.

Page generated in 0.0239 seconds