• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular dynamics simulations and theory of intermolecular interactions in solutions

Kang, Myungshim January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Paul E. Smith / In the study of biological systems, molecular dynamics (MD) simulations have played an important role in providing atomic details for phenomena of interest. The force field used in MD simulations is a critical factor determining the quality of the simulations. Recently, Kirkwood-Buff (KB) theory has been applied to study preferential interactions and to develop a new force field. KB theory provides a path from quantities determined from simulation data to the corresponding thermodynamic data. Here we combine KB theory and molecular simulations to study a variety of intermolecular interactions in solution. First, recent results concerning the formulation and evaluation of preferential interactions in biological systems in terms of KB integrals are presented. In particular, experimental and simulated preferential interactions of a cosolvent with a biomolecule in the presence of water are described. Second, a force field for the computer simulation of aqueous solutions of amides is presented. The force field is designed to reproduce the experimentally observed density and KB integrals for N-methylacetamide (NMA), allowing for an accurate description of the NMA activity. Other properties such as the translational diffusion constant and heat of mixing are also well reproduced. The force field is then extended to include N,N'-dimethylacetamide and acetamide with good success. The models presented here provide a basis for an accurate force field for peptides and proteins. Comparison between the developed KB force fields (KBFF) and existing force fields is performed for amide and glycine and proves that the KBFF approach is competitive. Also, explicit expressions are developed for the chemical potential derivatives, partial molar volumes, and isothermal compressibility of solution mixtures involving four components at finite concentrations using the KB theory of solutions. A general recursion relationship is also provided which can be used to generate the chemical potential derivatives for higher component solutions. Finally, a pairwise preferential interaction model (PPIM), described by KB integrals is developed to quantify and characterize the interactions between functional groups observed in peptides.
2

Molecular dynamics simulations of aqueous ion solutions

Mohomed Naleem, Mohomed Nawavi January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Paul Edward Smith / The activity and function of many macromolecules in cellular environments are coupled with the binding of ions such as alkaline earth metal ions and poly oxo anions. These ions are involved in the regulation of important processes such as protein crystallization, nucleic acid and protein stability, enzyme activity, and many others. The exact mechanism of ion specificity is still elusive. In principle, computer simulations can be used to help provide a molecular level understanding of the dynamics of hydrated ions and their interactions with the biomolecules. However, most of the force fields available today often fail to accurately reproduce the properties of ions in aqueous environments. Here we develop a classical non polarizable force field for aqueous alkaline earth metal halides (MX₂) where M = Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ and X = Cl⁻, Br⁻, I⁻, and for some biologically important oxo anions which are NO₃⁻, ClO₄⁻, H₂PO₄⁻ and SO₄²⁻, for use in biomolecular simulations. The new force field parameters are developed to reproduce the experimental Kirkwood-Buff integrals. The Kirkwood-Buff integrals can be used to quantify the affinity between molecular species in solution. This helps to capture the fine balance between the interactions of ions and water. Since this new force field can reproduce the experimental Kirkwood-Buff integrals for most concentrations of the respective salts, they are capable of reproduce the experimental activity derivatives, partial molar volumes, and excess coordination numbers. Use of these new models in MD simulations also leads to reasonable diffusion constants and dielectric decrements. Attempts to develop force field parameters for CO₃²⁻, HPO₄²⁻ and PO₄³⁻ ions were unsuccessful due to an excessive aggregation behavior in the simulations. Therefore, in an effort to overcome this aggregation behavior in the simulations, we have investigated scaling the anion to water interaction strength, and also the possibility of using a high frequency permittivity in the simulations. The strategy of increasing relative permittivity of the system to mimic electronic screening effects are particularly promising for decreasing the excessive ion clustering observed in the MD simulations.

Page generated in 0.0222 seconds