• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Targets in Autoimmune Polyendocrine Syndrome Type1 and Their Clinical Implications

Alimohammadi, Mohammad January 2009 (has links)
Autoimmune diseases occur when the immune system attacks and destroys healthy body tissue. Autoimmunity is known to cause a wide range of disorders, and is suspected to be responsible for many more. Most autoimmune disorders are chronic and cause severe morbidity for the patients, and are also costly for society. A majority of these disorders are today considered as complex diseases with incompletely known etiology. Hence, model systems for studying the pathogenesis of autoimmunity are important to unravel its causes. Autoimmune Polyendocrine Syndrome Type 1 (APS-1), (OMIM 240300), is a rare autoimmune disorder. Patients with APS-1 progressively develop multiple organ-specific autoimmune lesions involving both endocrine and non endocrine tissues. Typical autoimmune disease components in APS-1 are hypoparathyroidism, Addison’s disease, vitiligo, alopecia and type 1 diabetes. The gene preventing APS-1 has been identified and designated Autoimmune Regulator (AIRE). It has been shown that mutations of AIRE cause loss of tolerance to self-structures, resulting in organ-specific autoimmunity. Although APS-1 is a rare syndrome occurring mainly in genetically isolated populations, the disease components of APS-1 are, in isolated forms, not unusual in the general population and affect many patients. Hence, APS-1 is an attractive model disease for studies of molecular mechanisms underlying organ-specific autoimmunity. This thesis concerns investigations in which two novel autoantigens are identified in APS-1 and used in serological diagnosis of the disease. NALP5, is identified as a parathyroid autoantigen - an important finding since autoimmune hypoparathyroidism is one of the cardinal symptoms of APS-1. Additionally, KCNRG is identified as a bronchial autoantigen in APS-1 patients with respiratory symptoms. Finally, studies that compare the immune response in APS-1 patients and the mouse model for APS-1 are presented.

Page generated in 0.0233 seconds