• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impacts of Fertilization on Soil Properties in Loblolly Pine Plantations in the Southeastern United States

Tacilla Villanueva, Antonio 06 July 2015 (has links)
We examined the effects of periodic nitrogen (N) and phosphorus (P) fertilizer applications on the O horizon and mineral soil in loblolly pine (Pinus taeda L.) plantations over a 12-year period. To accomplish this, we used 9 experimental sites located across the south, which were grouped using the CRIFF Classification System. Group 1—CRIFF A, B (poorly-drained Ultisols); group 2—CRIFF C, D, G (sandy Spodosols and Entisols); and group 3—CRIFF E, F (well-drained Ultisols). Fertilization rates were 135, 202, and 269 kg N ha-1 at 4 years application frequency. This resulted in a cumulative N application rate of 540, 808, and 1076 kg ha-1. P was added at 10% of the N rate. Fertilization increased the mass, N content, and P content of the O horizon in all soil groups. Fertilization did not impact mineral soil N. No significant increases in total N trends were observed to a depth of 1 m. Likewise, total inorganic N (NH4+ + NO3-) was not affected by fertilization. These results suggest that N fertilization will have little effect on long-term soil N availability regardless of soil types. In contrast, fertilization increased extractable P in soil CRIFF groups 1, 2, and 3 by 26, 60, and 4 kg P ha-1 respectively suggesting potential for long-term soil P availability and site quality improvement. However, the low extractable P in soil group 3 implies additional fertilization with P for the next rotation for sites included into this soil group. / Master of Science

Page generated in 0.0759 seconds