• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Sub-Kalahari geology and tectronic evolution of the Kalahari basin, Southern Africa

Haddon, Ian Gerald 15 February 2006 (has links)
Ph.D. - Geology / Geophysical, borehole and mapped data from the Kalahari Basin were used to create maps of the sub-Kalahari geology, isopachs of the Kalahari Group and basal gravels and a sub-Kalahari topographical surface. These are the first basin-wide maps of this type to be produced. These new data were interpreted with the aid of an extensive literature review as well as data gathered at three localities in the southern part of the Kalahari Basin and enabled several conclusions to be made regarding the tectonic evolution of the area. The sub-Kalahari Geological Map shows that rocks dating from the Archaean to present are exposed on the edges of the basin as well as covered by the Kalahari Group sedimentary rocks. Many of the rocks shown on the sub-Kalahari geological map record a history of rifting and subsequent collision, with the NE and SW trending structures appearing to have been reactivated at various times in the geological past. The extent of Karoo Supergroup rocks is greater than previously thought and Karoo sedimentary and volcanic rocks cover a large percentage of the sub-Kalahari surface. The Karoo Supergroup lithologies have been intruded by dolerite dykes and sills and the massive Botswana Dyke Swarm is shown on the sub-Kalahari map extending in a northwest direction across Botswana. The subtraction of the thicknesses of Kalahari Group sediments from the current topographical digital elevation model (DEM) of Africa in order to prepare a DEM of the sub-Kalahari topographical surface and the preparation of an isopach map of the basal gravels gives some indication of the courses followed by Mid-Cretaceous rivers. Topographic profiles along the proposed courses of these rivers show that the floor of the Kalahari Basin has a particularly low elevation in certain areas suggesting that downwarp of the interior of the basin rather than adjacent uplift was the driving force behind Kalahari Group sedimentation. When down-warp of the Kalahari Basin began in the Late Cretaceous these rivers were back-tilted into the newly formed basin and deposition of the Kalahari Group sediments began. The basal unit of the Kalahari Group consists of gravels deposited by the Cretaceous rivers as well as on scree slopes. As down-warp of the basin continued, so more gravels were deposited as well as the sand and -iifiner sediment carried by the rivers. Thick clay beds accumulated in the lakes that formed by the back-tilted rivers, with sandstone being deposited in braided streams interfingering with the clays and covering them in some areas as the shallow lakes filled up with sediment. During the Mid-Miocene there was a period of tectonic stability that saw the silcretisation and calcretisation of older Kalahari Group lithologies. At the end of the Miocene there was some uplift along the eastern side of southern Africa as well as along certain epeirogenic axes in the interior. In general this uplift was fairly gentle. Later more significant uplift in the Pliocene possibly elevated Kalahari Group and Karoo Supergroup sedimentary rocks above the basin floor and exposed many of them to erosion. The eroded sand was washed into the basin and reworked into dunes during drier periods. This uplift occurred along epeirogenic axes and was greater than the Miocene uplift. The development of the East African Rift System (EARS) in the Late Eocene or Oligocene has had a significant influence on the Kalahari Basin. Reactivation of older NE-SW trends by SWpropagating rifts extending from the main EARS is evident by recent movement along faults along the Damara Belt and those that were associated with Karoo sedimentation and post-Karoo graben formation. The propagating rifts have resulted in uplifting, faulting and in some cases, graben formation. In some cases lakes have formed in the grabens or half-grabens themselves and in other cases they have been formed between the uplifted arches related to parallel rifts. The propagating rifts have had a strong influence on the drainage patterns and shape of the Kalahari Basin, in particular in the middle parts of the basin where they have controlled the formation of the Okavango Delta and the Makgadikgadi pans
2

Local and regional factors influencing dung beetle assemblage structure across an environmental gradient in Botswana

Tshikae, Balatlhane Power 19 October 2011 (has links)
The taxonomic composition, structure, and diversity of current local species assemblages results from an interacting complex of historical, regional ecological and local ecological factors. Structural differences between such current species assemblages are primarily determined by changing ecological conditions across spatial gradients. These conditions may change abruptly or they may represent a gradual divergence. Across the Botswana Kalahari basin there is a gradual northeast-southwest aridity and dung type gradient, which was demonstrated to strongly influence dung beetle assemblage structure at six study sites from Chobe National Park to the Central Kalahari Reserve to the Kgalagadi Transfrontier Park using carrion and four dung types as bait (pig, elephant, cattle, sheep). Regional patterns were primarily influenced by climate (rainfall) while dung type mainly showed a local influence on patterns of variation. Four distinct biogeographical groups were defined for the study region comprising widespread, northeast/widespread, northeast, and arid southwest Kalahari-centred species. Biogeographical diversity was higher in the more mesic NE than the arid SW but varied somewhat between bait types. In the SW, Kalahari endemics dominated all bait types. In general, abundance and species richness declined along the aridity gradient although the pattern was uneven due to low numbers in the north of the Central Kalahari Game Reserve. Species showed high turnover (beta – diversity), particularly between the moister NE and the Kalahari/Savanna ecotone. Hierarchical Analysis of Oblique Factors showed statistically distinct separation between assemblage structure at the six study sites and that the proportion of mesic NE shared influence on assemblage composition declined towards the SW where there was an increase in Kalahari endemics. Similarly the proportion of arid SW shared influence declined towards the NE. Plotting these results onto a map showed that the point of intersection between shared NE or SW influence lay very close to the ecotone between SW (Kalahari Xeric Savanna) and NE-centred ecoregions (Acacia-Baikiaea Savanna) defined for the area by Olson et al. (2001). In terms of dung type diversity, increasing aridity across the Kalahari represents a gradient of diminishing resources with the loss of large dung types to the SW and increasing dominance of dung pellets. Several different patterns of response were shown using different methods. Four principal patterns of bait type association were indicated by one method. Another method showed that, rather than diminishing numbers of competing species leading to widening niche widths to the SW, niche widths were narrowest at the Kalahari / mesic Savanna ecotone. Using several other multivariate techniques, three different patterns of dung type resource partitioning were demonstrated that paralleled the aridity gradient, one common to the NE and two to the SW. The historical, regional and local ecological factors influencing these patterns of dung beetle assemblage structure are discussed as well as implications and recommendations for conservation. / Thesis (PhD)--University of Pretoria, 2011. / Zoology and Entomology / unrestricted

Page generated in 0.0458 seconds