• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of HF communications: HF noise and signal features.

Giesbrecht, James E. January 2008 (has links)
To many, high-frequency (HF) radio communications is obsolete in this age of long distance satellite communications and undersea optical fiber. Yet despite this, the HF band is used by defence agencies for backup communications and spectrum surveillance, and is monitored by spectrum management organizations to enforce licensing. Such activity usually requires systems capable of locating distant transmitters, separating valid signals from interference and noise, and recognizing signal modulation. Research presented here targets the latter issue. The ultimate aim is to develop robust algorithms for automatic modulation recognition of real HF signals, where real means signals propagating by multiple ionospheric modes with co-channel signals and non- Gaussian noise. However, many researchers adopt Gaussian noise models for signals for the sake of convenience at the cost of accuracy. Furthermore, literature describing the probability density function (PDF) of HF noise does not abound. So an additional aim of this research is measurement of the PDF of HF noise. A simple empirical technique, not found in the literature, is described that supports the hypothesis that HF noise is generally not Gaussian. In fact, the probability density function varies with the time of day, electromagnetic environment, and state of the ionosphere. Key contributions of this work relate to the statistics of HF noise and the discrimination of real HF signals via three signal features. Through two unique experiments, the density function of natural HF noise is found to closely follow a Bi-Kappa distribution. This distribution can model natural and man-made HF noise through a single control parameter. Regarding signal features, the coherence function is found to be a brute-force technique suitable only for hard (not soft) decisions. A novel application of an entropic distance measure proves able to separate four real HF signals based on their modulation types. And, an estimator for signal-to-noise (SNR) ratio is shown to provide reasonable measures of SNR for the same real HF signals. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1330848 / Thesis (Ph.D.) - University of Adelaide, School of Electrical and Electronic Engineering, 2008
2

Test Charge Response of a Dusty Plasma with Grain Size Distribution and Charging Dynamics

Shafiq, Muhammad January 2006 (has links)
This doctoral thesis reports analytical and numerical results for the electrostatic response of a dusty plasma to a moving test charge. Two important physical aspects of dusty plasmas, namely grain size distribution and grain charging dynamics were taken into account. In the first case, a dusty plasma in thermal equilibrium and with a distribution of grain sizes is considered. A size distribution is assumed which decreases exponentially with the grain mass for large sizes and gives a simple smooth reduction for small sizes. The electrostatic response to a slowly moving test charge, using a second order approximation is found and the effects of collisions are also investigated. It turns out that for this particular size distribution, there is a remarkably simple result that the resulting effective distribution for the electrostatic response is a kappa (generalized Lorentzian) distribution. In the second case, we present an analytical model for the shielding of a slowly moving test charge in a dusty plasma with dynamical grain charging for cases both with and without the collision effects. The response potential is treated as a power series in test charge velocity. Analytical expressions for the response potential are found up to second order in test charge velocity. The first-order dynamical charging term is shown to be the consequence of the delay in the shielding due to the dynamics of the charging process. It is concluded that the dynamical charging of the grains in a dusty plasma enhances the shielding of a test charge. To clarify the physics, a separate study is made where the charging is approximated by using a time delay. The resulting potential shows the delayed shielding effect explicitly. The terms in the potential that depend on the charging dynamics involve a spatial shift given by the test charge velocity and the charging time. The wake potential of a fast moving test charge in the case of grain charging dynamics was also found. It was observed that the grain charging dynamics leads to a spatial damping and a phase shift in the potential response. Finally, combining these two physical aspects, generalized results for the electrostatic potential were found incorporating the terms from both grain size distribution and grain charging dynamics. The generalized results contain the previous work where these two effects were studied separately and which can now be found as special limiting cases. This kind of work has relevance both in space and astrophysical plasmas. / QC 20100920

Page generated in 0.1159 seconds