• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geothermal history of the Karoo Basin in South Africa inferred from magnetic studies

Maré, Leonie Pauline 02 July 2015 (has links)
Ph.D (Geology) / The Karoo succession has economic significance through the exploitation of extensive coal deposits and in recent years has seen significant international interest due to potentially large shale gas resources. The thermal history of sedimentary basins affects the genesis of hydrocarbon deposits and it is therefore essential to model and reconstruct the geothermal variation across the Karoo Basin before evaluation of the hydrocarbon resources can take place. The main scientific questions related to the thermal history of the Karoo Basin are whether the emplacement of large volumes of magma was preceded by a large-scale lowgrade thermal doming as proposed for continental rift settings. Alternatively, was the Karoo thermal event restricted to the contact aureole of intrusives, as well as the question whether the intrusion of dolerite resulted in large-scale CO2 or CH4 degassing from coalbeds and carbonaceous shales based on similarities to other large igneous provinces? Magnetic techniques provide an alternative to more traditional methods to study the geothermal history of sedimentary basins (such as illite crystallinity and vitrinite reflectance), which are often associated with significant uncertainty. Three experiments using existing magnetic and palaeomagnetic methods were conducted to determine the peak temperatures reached by Karoo sedimentary rocks before and after the Karoo magmatic event. These experiments include the classic palaeomagnetic baked contact tests (magnetostratigraphy), analyses of the variation of magnetic susceptibility during repeated progressive heating (alteration index method) as well the variation of relative concentrations of fine grained pyrrhotite and magnetite in sedimentary strata relative to their distance from an intrusive (pyrrhotite/magnetite geothermometer). Additionally various magnetic fabric analyses were performed including a study of the variation in anisotropy of magnetic susceptibility (AMS). Although these techniques were successful in delineating the extent of the contact aureoles, only the alternating index (A40) had the ability to give estimated peak temperatures. Results indicate a general elevation of palaeotemperatures of the organic-rich sedimentary rocks of the Ecca Group to temperatures where hydrocarbons are normally converted into gas. Importantly, it is clear from this study that the greatest thermal effects of the sill intrusions on the sedimentary strata are limited to the contact aureoles, suggesting that there is an, as yet unquantified, potential for hydrocarbon resources remaining between these intrusions. A general increase in the palaeotemperatures from southwest to northeast across the basin was observed. This is mainly due to differences in thermal conductivity of the various lithologies across the basin from tight low porosity marine shales in the south and southwest towards more lacustrine mudstone and porous sandstone in the northeast.
2

Groundwater investigations using geophysical techniques at Marophe, the Okavango Delta, Botswana /

Laletsang, Kebabonye, January 1995 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 1996. / Typescript. Bibliography: leaves 136-146. Also available online.
3

Stratigraphie der Karroo-Becken in Ost-Tanzania (unter besonderer Berücksichtigung potentieller Kohlenwasserstofftrager) /

Kreuser, Thomas, January 1983 (has links)
Thesis (doctoral)--Universität zu Köln, 1983. / Three folded maps in pocket. Includes bibliographical references (p. 197-217).
4

Stratigraphy and basin modelling of the Gemsbok Sub-Basin (Karoo Supergroup) of Botswana and Namibia

Nxumalo, Valerie 22 June 2011 (has links)
The Gemsbok Sub-basin is situated in the south-western corner of the Kalahari Karoo Basin and extends south from the Kgalagadi District of Botswana into the Northern Cape (South Africa); and west into the Aranos Basin (southeast Namibia). The Sub-basin preserves a heterogeneous succession of Upper Palaeozoic to Lower Mesozoic sedimentary and volcanic rocks of the Karoo Supergroup. Because the succession is largely covered by the Cenozoic Kalahari Group, the stratigraphy of the succession is not as well understood as the Main Karoo Basin in South Africa. Most research in the Gemsbok Sub-basin is based on borehole data. This study focuses on the intrabasinal correlation, depositional environments and provenance of the Karoo Supergroup in the Gemsbok Sub-basin in Botswana and Namibia. Based on detailed sedimentological analyses of 11 borehole cores of the Karoo Supergroup in the Gemsbok Sub-basin of Botswana and Namibia, 8 facies associations (FAs) comprising 14 lithofacies and 2 trace fossil assemblages (Cruziana and Skolithos ichnofacies) were identified. The facies associations (FA1 to FA8) correspond to the lithostratigraphic subdivisions (the Dwyka Group, Ecca Group, Beaufort equivalent Group, Lebung Group [Mosolotsane and Ntane formations] and Neu Loore Formation) of the Karoo Supergroup. Sedimentological characteristics of the identified facies associations indicate the following depositional environments: glaciomarine or glaciolacustrine (FA1, Dwyka Group), deep-water (lake or sea) (FA2, Ecca Group), prodelta (FA3, Ecca Group), delta front (FA4, Ecca Group), delta plain (FA5, Ecca Group), floodplain (probably shallow lakes) (FA6, Beaufort Group equivalent), fluvial (FA7, Mosolotsane and Neu Loore formations) and aeolian (FA8, Ntane Sandstone Formation). The Dwyka Group (FA1) forms the base of the Karoo Supergroup in the Gemsbok Subbasin and overlain by the Ecca Group deposits. Three types of deltas exist within the Ecca Group: fluvial-dominated; fluvial-wave interaction and wave-dominated deltas. The Gemsbok Sub-basin was characterised by rapid uplift and subsidence and high sediment influx during the deposition of the Ecca Group. Petrographic and geochemical analyses of the Ecca Group sandstones revealed immature arkose and subarkose type sandstones dominated by angular to subangular detrital grains, sourced from transitional continental and basement uplifted source areas. The sandstones of Ntane Sandstone Formation are classified as subarkoses and sourced from the craton interior provenances.
5

Lithostratigraphy, depositional environments and sedimentology of the Permian Vryheid Formation (Karoo Supergroup), Arnot North, Witbank Coalfield, South Africa

Uys, Joanne 30 April 2009 (has links)
M.Sc. / This work documents the lithostratigraphy and interpreted depositional environments of the Permian Vryheid Formation in the most northern proximal setting yet studied in the Witbank Coalfield. Data from 924 boreholes from two mining companies (Anglo Operations Ltd. and Xstrata Coal Ltd.) drilled over 50 years, covering an area of 910km2 revealed a 35m sequence of terrigenous clastic sedimentary rocks containing two coal seams. These seams are numbered No. 1 at the base and No. 2 at the top. Delineation of facies type, facies assemblages, lateral facies distributions and computer-based three-dimensional modeling facilitated the interpretation of the palaeodepositional environments. Eleven lithofacies are defined and interpreted hydrodynamically. Facies classification is based primarily on grain size and sedimentary structures. The modeling of the borehole information uses the finite element method to interpolate the thickness, roof and floor surfaces and trend of each seam and inter-seam parting between boreholes. The spatial position of the boreholes is defined using a digital terrain model that represents the current surface topography. Lateral distributions were correlated by repositioning the boreholes using the base of the No. 2 seam as a datum. Glaciofluvial, glaciolacustrine, bed-load (braided) fluvial and constructive progradational deltaic environments are interpreted in the study area. Fluvial channel sequences are dominant and cause the thinning of the coal seams below channel axes as well as splitting of both the No. 1 and No. 2 seams. Glaciofluvial influences also affect the lower portion of the No. 1 seam. Basement palaeotopography restricts the distribution of the lower splits of the No. 1 seam. The coals either ‘pinch-out’ or are absent above basement highs but blanket the adjacent low-lying areas. In contrast to the greater Witbank Coalfield, but concurrent with other studies in the more northern proximal regions, fluvial systems dominate over deltaic systems in the study area. Glaciodeltaic, fluviodeltaic and anastomosed channel fluvial systems recognized in the remainder of the Karoo Basin were fed by the braided fluvial systems in the study area. The close proximity of the study area to the northern edge of the basin accounts for the subtle differences in lithostratigraphy and interpreted depositional environments when compared with more distal sites to the south. For example, glaciofluvial clastic sediment input in the lower portions of the No. 1 seam and post-Karoo erosion that has removed the overlying seams; the deltaic progradational sequence, above the No. 2 seam, occurs twice in succession and the bioturbation, that has become characteristic of sedimentary sequence of the Vryheid Formation above the No. 2 seam in the central and southern parts of the Karoo Basin, is not as identifiable. These differences are explained by the extreme proximal location of the study area on the northern basin margin relative to the remainder of the Karoo Basin.
6

Geological controls on no. 4 seam roof conditions at New Denmark Colliery, Highveld Coal Field, Karoo Basin, South Africa

Stanimirovic, Jasmina 28 January 2009 (has links)
M.Sc. / The coal-bearing Permian Vryheid Formation of the Ecca Group (Karoo Supergroup) was investigated at New Denmark Colliery, situated in the north east section of the Karoo Basin, South Africa. The lithostratigraphy of the sequence is defined in terms of conventional lithostratigraphic terminology but also by applying detailed genetic stratigraphic schemes that have previously been proposed for the adjacent coalfields. The succession is divided up into depositional sequences named after the underlying and overlying coal seams, the No. 2, 3, 4 and 5 seam sequences. The sedimentary succession was divided up into five facies, namely: conglomerate facies, sandstone facies, interlaminated sandstone-siltstone facies, siltstone facies and coal facies. These were interpreted hydrodynamically. Facies assemblages were then interpreted palaeoenvironmentally. Glacial, fluvial, deltaic and transgressive marine sequences were responsible for forming this sedimentary succession. Attention was then focussed on the main economic No. 4 seam, which is mined underground at the colliery. Detailed subsurface geological cross-sections, core sequences and isopach maps of the No. 4 seam coal and the lithologies above, were used to determine specific aspects of the depositional environment that could contribute to unstable roof conditions above No. 4 seam. Coarsening-upward deltaic cycles, fining-upward bedload fluvial cycles, glauconite sandstone marine transgressions and crevasse-splay deposits are recognized in the overlying strata. Poor roof conditions occur parallel to palaeochannel margins because the interbedded channel sandstone and adjacent flood plain argillites cause collapsing along bedding plane surfaces. Rider coals overlying thin crevasse-splay sequences in close proximity to the No. 4 seam, create one of the most serious roof conditions; complete collapse occurs along the rider coal contact with the underlying splay deposits. Differential compaction of mudrock/shale/siltstone over more competent sandstone causes slickensided surfaces that weaken the roof lithologies. Correct identification of these sedimentological features will enable the prediction of potential poor roof conditions during mining operations and mine planning.
7

Laser ablation ICP-MS age determination of detrital zircon populations in the Phanerozoic Cape and Lower Karoo Supergroups (South Africa) and correlatives in Argentina.

Vorster, Clarisa 14 January 2014 (has links)
Ph.D. (Geology) / The successions of the Cape- and Karoo Supergroups preserve an integrated history of sedimentation along the paleo-Pacific margin of Gondwana from the Paleozoic to the Early Mesozoic. The Cape- and Karoo Supergroups have been well studied with regard to stratigraphy, sedimentary facies and depositional environment. However, the nature and location of their source regions, especially for the changeover from deposition within an Atlantic-type continental margin basin for the successions of the Cape Supergroup to an Andean-type continental foreland basin for some of the units of the Karoo Supergroup, remains poorly understood. In order to shed light on the nature of these source regions, a comprehensive U-Pb detrital zircon study of the successions of the Cape- and lower Karoo Supergroups was launched. A representative number of samples from the upper and lower successions of the Table Mountain- Bokkeveld- and Witteberg Groups of the Cape Supergroup as well as the Dwyka and Ecca Groups of the Karoo Supergroup were collected throughout the western, southwestern and southern Cape region. A few samples of the Dwyka Group were also collected within the more eastern outcrop regions of the succession located in Kwazulu-Natal. The sedimentary rocks of the Natal Group and Msikaba Formation have long been regarded as coeval with the Cape Supergroup. Similar to the successions of the Cape- and Karoo Supergroups, very little is known about their sedimentary source regions. Also, their relative age of sedimentation remains poorly constrained. The U-Pb detrital zircon study of the successions of the Cape- and lower Karoo Supergroups was thus extended so as to include the successions of the Natal Group and Msikaba Formation. The detrital zircon age populations of the successions of the Natal Group and Msikaba Formation would not only improve the present understanding with regards to the sedimentary source regions to these units but would also facilitate the evaluation of possible correlations between these units and the stratigraphic units of the Cape Supergroup. Samples of both the lower Durban Formation and the upper Mariannhill Formation of the Natal Group and the Msikaba Formation (which is presently regarded as being part of the Cape Supergroup) were therefore collected within their respective outcrop regions in the Kwazulu-Natal area. The similarities in litho- and bio-stratigraphy between the successions of the Cape- and Karoo Supergroups and those of the Ordovician to Early Permian successions of the Ventania System and the Ordovician to Silurian successions of the Tandilia System in Argentina have long been recognized. Although the detrital zircon populations of some of the formations within these Systems have been evaluated in the past, it is yet to be determined whether these successions and those of the Cape- and lower Karoo Supergroups have certain source regions in common. In order to facilitate such a comparison, samples of selected units of the Ventania System were therefore collected near Sierra de la Ventania, while a sample of the Balcarce Formation of the Tandilia System was obtained near Mar del Plata. The detrital zircon age populations of the successions of the Ventania and Tandilia Systems were also further evaluated in the light of establishing or confirming a time-correlation between these formations and those of the Cape- and lower Karoo Supergroups. U-Pb age determination of the detrital zircons population of the samples was conducted by means of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Although LA-ICP-MS is a routine, well-established technique where the U-Pb age determination of detrital zircons is concerned, it was yet to be established at the centralized analytical facility of the University of Johannesburg, SPECTRUM, using the instrumentation currently available (i.e. 213nm Nd:YAG laser coupled to Quadrupole-based ICP-MS). The U-Pb age determination of detrital zircons was therefore preceded by a fair amount of instrument optimization and method development. Well studied shortcomings of U-Pb detrital zircon dating by LA-ICP-MS such as laser induced elemental fractionation, mass discrimination effects and as well as the possible occurrence of minor common-Pb needs were addressed and corrected for. The detrital zircon populations of successions in the Cape Supergroup have a distinct major Neoproterozoic to Early Cambrian age component, which can be attributed to an input of detritus from successions related to the Pan-African Orogeny in South Africa, such as the Gariep- and Saldania Belts located towards the north of the Cape Basin. A substantial amount of Mesoproterozoic detrital zircon grains is also present in all the samples from the successions of the Cape Supergroup. These grains of Mesoproterozoic age were probably derived from the Namaqua-Natal Metamorphic Province, which is also regarded as the source of some minor amounts of Paleoproterozoic detrital zircon grains. The near absence of Archean grains from the detrital zircon populations of the successions of the Cape Supergroup is notable, and is thought to be due to the Namaqua-Natal Metamorphic Province acting as a geomorphological barrier at the time of their deposition. The minor Paleozoic (Ordovician to Carboniferous) detrital zircon populations in the samples from the formations of the Cape Supergroup increase progressively upwards through the succession. ....
8

Stratigraphy and sedimentary environments of the Late Permian Dicynodon Assemblage Zone (Karoo Supergroup, South Africa) and implications for basin development

Viglietti, Pia Alexa January 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy. June 2016. / The Dicynodon Assemblage Zone (DiAZ) spans the last three million years of the Late Permian (Lopingian) Beaufort Group (Karoo Supergroup). Fluvio-lacustrine conditions covered the entire Karoo Basin during this period, preserved as the rocks of the Balfour, Teekloof, and Normandien formations. However widely separated exposures and few dateable horizons make correlating between lithostratigraphic subdivisions difficult. Here a revised litho- and biostratigraphic framework is provided for the Upper Permian DiAZ. The Balfour Formation’s Barberskrans Member (BM) is renamed due to identifying the Oudeberg Member and not the BM at the current type locality (Barberskrans Cliffs). It is renamed Ripplemead member (RM) after Ripplemead farm 20 km north of Nieu Bethesda where it outcrops. The Teekloof Formation’s Javanerskop member and Musgrave Grit unit in the central Free State Province are regarded mappable units whereas the Boomplaas sandstone (BS) may represent a unit that is a lateral equivalent to the Oudeberg Member. Palaeontological and detrital zircon data suggest none of these locally persistent sandstone horizons correlate temporally. Three index fossils that currently define the DiAZ (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) appear below its lower boundary and disappear below the Permo-Triassic Boundary (PTB), coincidentally with the appearance of Lystrosaurus maccaigi. The base of the DiAZ is redefined, with the revived Daptocephalus leoniceps and T. microps re-established as the index fossil for the newly proposed Daptocephalus Assemblage Zone (DaAZ), and is subdivided into two subzones. Da. leoniceps and T. microps’ appearance define the lower and L. maccaigi defines the base of the upper subzone. The same patterns of disappearance are observed at the same stratigraphic interval throughout the basin, despite the thinning of strata northward. Additionally wetter floodplain conditions prevailed in the Lower DaAZ than in the Upper DaAZ which likely reflects climatic changes associated with the Permo-Triassic mass extinction (PTME). Palaeocurrent and detrital zircon data demonstrate a southerly source area, and recycled orogen petrography indicates the Cape Supergroup is the source of Upper Permian strata. Dominant late Permian zircon population supports the foreland nature of the Karoo Basin. Orogenic loading/unloading events are identified by two fining-upward cycles, separated by a diachronous third-order subaerial unconformity at the base of the RM and Javanerskop members. Sediment progradation northwards was out-of-phase with the south and wedge-shaped. Distributive fluvial systems depositing sediment within a retroarc foreland basin best explains these observations. Lithostratigraphic beds and members are recommended for use as local marker horizons only in conjunction with other proxies, such as index fossils or radiometric dates in future studies. / LG2017
9

The evolution of marginal-marine systems of the Amibberg formation, Karasburg Basin, Southern Namibia: implications for Early-Middle Permian palaeogeography in South Western Gondwana

Berti, Michael 07 May 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2014. / The Karasburg Basin is situated in southern Namibia and preserves a heterogeneous succession of Karoo Supergroup strata up to 1000m thick. The uppermost preserved succession in this basin is the Amibberg Formation which is 250m thick and consists of intervals of sandstone, siltstone and mudstone. This study uses facies analysis, sequence stratigraphy and petrography to determine the palaeogeography and provenance for the Amibberg Formation. This is then used to establish environmental variability across the Karasburg – Aranos – Main Karoo basins and to define an equivalent of the Amibberg Formation in the Main Karoo Basin. Detailed stratigraphic logging of five outcrop localities has led to the identification of seven distinct lithofacies and two dominant ichnofacies (Cruziana and Skolithos). These lithofacies include: 1) Massive, laminated and bioturbated mudstones interpreted as offshore deposits (OS); 2) Bioturbated siltstones and sandstones which are representative of offshore-transitional environments (OST); 3) Interbedded sandstones and siltstones also interpreted as offshore-transitional deposits (OST) and generated by river-fed hyperpycnal plumes; 4) Sharp based, massive sandstones interpreted as being deposited on the distal lower shoreface (dLSF); 5) Non-amalgamated hummocky cross-stratified (HCS) and wave rippled sandstones interpreted as distal lower shoreface deposits (dLSF); 6) Amalgamated HCS and wave rippled sandstones interpreted as proximal lower shoreface deposits (pLSF); and 7) Soft-sediment deformed (SSD) sandstones and siltstones occurring in close juxtaposition with dLSF and pLSF deposits. The vertical arrangement of these lithofacies shows a general coarsening and shallowing upward trend. Overall the rocks of the Amibberg Formation consist of wave-dominated shoreface deposits with significant influence by tidal processes. Petrographically, the sandstone samples fall into the class of quartz and feldspathic wackes and are sourced from craton interior provenances. Geochemical analysis of mudstones and nodules indicate high levels of microbial activity under predominantly oxic conditions during the deposition of the Amibberg Formation. Five poorly defined 4th order T-R cycles are observable within the strata of the Amibberg Formation. Large regressive intervals are capped by thin transgressive tracts and these cycles are interpreted to have formed due to eustatic processes. Overall, the Amibberg Formation represents a regressive shoreline. iii Based on the mean palaeocurrent vectors a NNE-SSW palaeoshoreline orientation is deduced and the shoreface must have occupied a palaeohigh on the northern side of the western Cargonian Highlands. This emergent highland acted as an extensive headland and assisted in the connectivity of the Karasburg and Aranos basins, with partial connectivity with the Main Karoo Basin during the Early Permian. Based on this study, the Amibberg Formation is considered an equivalent of the Waterford Formation in the Main Karoo Basin based on similar: stratigraphic position; thickness; sedimentary structures; trace fossil assemblages and stacking patterns.
10

A comparative study of detrital zircon ages from river sediment and rocks of the Karoo Supergroup (Late Carboniferous to Jurassic), Eastern Cape Province, South Africa : implications for the tectono-sedimentary evolution of Gondwanaland’s southern continental margin

Bowden, Laura Leigh 26 June 2014 (has links)
M.Sc. (Geology) / The Mzimvubu River, situated in the Eastern Cape Province of South Africa, drains essentially strata of the Late Carboniferous to Jurassic Karoo Supergroup with minor intersection of the underlying Devonian Msikaba Formation near the mouth of the river at Port St. Johns. Rock- and river sediment samples were collected at specific points from within the Mzimvubu River drainage basin, based on changes in the geology through which the rivers flow. Detrital zircon age population data was obtained by LA-ICP-MS for each sample in order to meet the two-fold objective of the study; firstly to investigate the reliability of using detrital zircon grains as indicators of sedimentary provenance and secondly to determine possible source areas for the Karoo strata and underlying Msikaba Formation. Through the comparison of detrital zircon age population data for the rock units of the Karoo Supergroup and Msikaba Formation to that of the river sediment, it is concluded that detrital zircon grains hold value in deciphering the geological history of a sedimentary basin. This interpretation is based on similar distributions and trends that are present in both the zircon age populations of the rock- and sediment samples. However, complexities associated with detrital zircon analysis pertaining to rock type and depositional settings are noted and therefore certain procedures that can be implemented during field sampling have been suggested in this study so as to ensure accurate results are obtained. This will further ensure that reliable interpretations of the geological history of a sedimentary basin are achieved. Additionally, by utilising the detrital zircon population data obtained in the first part of the study in conjunction with published scientific data, the provenance of the Karoo Supergroup in the southeastern part of the Main Karoo Basin has been determined. From this data it was determined that, especially the upper part of the Karoo Supergroup in the Eastern Cape Province of South Africa, was deposited much later than previously thought and that many of the stratigraphic layers in the Karoo Basin were deposited coevally in different parts of the basin with lithostratigraphic boundaries being time-transgressive. Ultimately the data allowed for the construction of a tectono-sedimentary model to explain the deposition of the upper Cape- and Karoo Supergroups that started with the deposition of the Msikaba Formation in a passive continental margin setting, to deposition of the lower part of the Karoo Supergroup in an Andean type of foreland basin, with rifting starting during the times of deposition of the Molteno Formation. The deposition of the Molteno-, Elliot- and Clarens Formations took place as Gondwanaland was breaking apart coeval with the formation of the Karoo Igneous Province.

Page generated in 0.0333 seconds