• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel computing techniques for computed tomography

Deng, Junjun 01 May 2011 (has links)
X-ray computed tomography is a widely adopted medical imaging method that uses projections to recover the internal image of a subject. Since the invention of X-ray computed tomography in the 1970s, several generations of CT scanners have been developed. As 3D-image reconstruction increases in popularity, the long processing time associated with these machines has to be significantly reduced before they can be practically employed in everyday applications. Parallel computing is a computer science computing technique that utilizes multiple computer resources to process a computational task simultaneously; each resource computes only a part of the whole task thereby greatly reducing computation time. In this thesis, we use parallel computing technology to speed up the reconstruction while preserving the image quality. Three representative reconstruction algorithms--namely, Katsevich, EM, and Feldkamp algorithms--are investigated in this work. With the Katsevich algorithm, a distributed-memory PC cluster is used to conduct the experiment. This parallel algorithm partitions and distributes the projection data to different computer nodes to perform the computation. Upon completion of each sub-task, the results are collected by the master computer to produce the final image. This parallel algorithm uses the same reconstruction formula as the sequential counterpart, which gives an identical image result. The parallelism of the iterative CT algorithm uses the same PC cluster as in the first one. However, because it is based on a local CT reconstruction algorithm, which is different from the sequential EM algorithm, the image results are different with the sequential counterpart. Moreover, a special strategy using inhomogeneous resolution was used to further speed up the computation. The results showed that the image quality was largely preserved while the computational time was greatly reduced. Unlike the two previous approaches, the third type of parallel implementation uses a shared-memory computer. Three major accelerating methods--SIMD (Single instruction, multiple data), multi-threading, and OS (ordered subsets)--were employed to speed up the computation. Initial investigations showed that the image quality was comparable to those of the conventional approach though the computation speed was significantly increased.
2

Efficient Cone Beam Reconstruction For The Distorted Circle And Line Trajectory

Konate, Souleymane 01 January 2009 (has links)
We propose an exact filtered backprojection algorithm for inversion of the cone beam data in the case when the trajectory is composed of a distorted circle and a line segment. The length of the scan is determined by the region of interest , and it is independent of the size of the object. With few geometric restrictions on the curve, we show that we have an exact reconstruction. Numerical experiments demonstrate good image quality.

Page generated in 0.0301 seconds