1 |
On the Subregular J-ring of Coxeter SystemsXu, Tianyuan 06 September 2017 (has links)
Let (W, S) be an arbitrary Coxeter system, and let J be the asymptotic Hecke
algebra associated to (W, S) via Kazhdan-Lusztig polynomials by Lusztig. We study
a subalgebra J_C of J corresponding to the subregular cell C of W . We prove a
factorization theorem that allows us to compute products in J_C without inputs
from Kazhdan-Lusztig theory, then discuss two applications of this result. First, we
describe J_C in terms of the Coxeter diagram of (W, S) in the case (W, S) is simply-
laced, and deduce more connections between the diagram and J_C in some other
cases. Second, we prove that for certain specific Coxeter systems, some subalgebras
of J_C are free fusion rings, thereby connecting the algebras to compact quantum
groups arising in operator algebra theory.
|
2 |
Generic Algebras and Kazhdan-Lusztig Theory for Monomial GroupsAlhaddad, Shemsi I. 05 1900 (has links)
The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
|
Page generated in 0.0312 seconds