Spelling suggestions: "subject:"kemisk musik"" "subject:"demisk musik""
1 |
Ultrafast Spectroscopy of Atomic and Molecular Quantum DynamicsJohansson, Pia January 2006 (has links)
<p>An all-pervading feature of the work presented in this thesis is the study of ultrafast dynamics, both theoretically and experimentally, in terms of time-dependent wave functions (wave packets).</p><p>We have experimentally, by pump-probe fluorescence spectroscopy, examined spin-orbit interactions, by time-tracing molecular wave packets on excited states of diatomic rubidium, and the main channels causing the fast predissociation from one of those states is revealed.</p><p>The time evolution of wave packets and their extension in space, in addition to varying transition dipole moment is of specific interest in the semiclassically derived expressions for the total ion signal, in the context of pump-probe ionization spectroscopy on diatomic molecules.</p><p>We have experimentally, by pump-probe fluorescence spectroscopy, addressed a previously derived theoretical prediction about level interactions between atomic levels with all angular momentum quantum numbers equal but different principal quantum numbers. Hence, the ultrafast progression of atomic radial wave packets are disclosed in terms of quantum beat frequencies and explained theoretically in the context of pump-probe fluorescence spectroscopy.</p><p>Preliminary fluorescence up-conversion experiments are as well treated in this thesis with the aim to reveal further experimental knowledge on the previously derived theoretical prediction on the specific level interactions mentioned above.</p>
|
2 |
Ultrafast Spectroscopy of Atomic and Molecular Quantum DynamicsJohansson, Pia January 2006 (has links)
An all-pervading feature of the work presented in this thesis is the study of ultrafast dynamics, both theoretically and experimentally, in terms of time-dependent wave functions (wave packets). We have experimentally, by pump-probe fluorescence spectroscopy, examined spin-orbit interactions, by time-tracing molecular wave packets on excited states of diatomic rubidium, and the main channels causing the fast predissociation from one of those states is revealed. The time evolution of wave packets and their extension in space, in addition to varying transition dipole moment is of specific interest in the semiclassically derived expressions for the total ion signal, in the context of pump-probe ionization spectroscopy on diatomic molecules. We have experimentally, by pump-probe fluorescence spectroscopy, addressed a previously derived theoretical prediction about level interactions between atomic levels with all angular momentum quantum numbers equal but different principal quantum numbers. Hence, the ultrafast progression of atomic radial wave packets are disclosed in terms of quantum beat frequencies and explained theoretically in the context of pump-probe fluorescence spectroscopy. Preliminary fluorescence up-conversion experiments are as well treated in this thesis with the aim to reveal further experimental knowledge on the previously derived theoretical prediction on the specific level interactions mentioned above.
|
3 |
Nano-structured 3D Electrodes for Li-ion Micro-batteriesPerre, Emilie January 2010 (has links)
A new challenging application for Li-ion battery has arisen from the rapid development of micro-electronics. Powering Micro-ElectroMechanical Systems (MEMS) such as autonomous smart-dust nodes using conventional Li-ion batteries is not possible. It is not only new batteries based on new materials but there is also a need of modifying the actual battery design. In this context, the conception of 3D nano-architectured Li-ion batteries is explored. There are several micro-battery concepts that are studied; however in this thesis, the focus is concentrated on one particular architecture that can be described as the successive deposition of battery components (active material, electrolyte, active material) on free-standing arrays of nano-sized columns of a current collector. After a brief introduction about Li-ion batteries and 3D micro-batteries, the electrodeposition of Al through an alumina template using an ionic liquid electrolyte to form free-standing columns of Al current collector is described. The crucial deposition parameters influencing the nucleation and growth of the Al nano-rods are discussed. The deposition of active electrode material on the nano-structured current collector columns is described for 2 distinct active materials deposited using different techniques. Deposition of TiO2 using Atomic Layer Deposition (ALD) as active material on top of the nano-structured Al is also presented. The obtained deposits present high uniformity and high covering of the specific surface of the current collector. When cycled versus lithium and compared to planar electrodes, an increase of the capacity was proven to be directly proportional to the specific area gained from shifting from a 2D to a 3D construction. Cu2Sb 3D electrodes were prepared by the electrodeposition of Sb onto a nano-structured Cu current collector followed by an annealing step forcing the alloying between the current collector and Sb. The volume expansion observed during Sb alloying with Li is buffered by the Cu matrix and thus the electrode stability is greatly enhanced (from only 20 cycles to more than 120 cycles). Finally, the deposition of a hybrid polymer electrolyte onto the developed 3D electrodes is presented. Even though the deposition is not conformal and that issues of capacity fading need to be addressed, preliminary results attest that it is possible to cycle the obtained 3D electrode-electrolyte versus lithium without the appearance of short-circuits.
|
4 |
Modélisation théorique de la spectroscopie d'actinides des solvatés. / Theoretical modelling of actinide spectra in solution.Danilo, Cecile January 2009 (has links)
The framework of this PhD is the interpretation of Nuclear Magnetic Relaxation Dispersion experiments performed on solvated U4+, NpO2+ and PuO22+, which all have an f2 configuration. Unexpectedly the two actinyl ions have a much higher relaxivity than U4+. One possible explanation is that the electronic relaxation rate is faster for Uranium(IV) than for the actinyl ions. We address this problem by exploring the electronic spectrum of the three compounds in solution. A preliminary step is the computation of the electronic spectra of these three ions in gas phase. A two-step SOCI method has been used to investigate the spectroscopy in gas phase and in solution. The influence of electron correlation (treated in the first step) and spin-orbit relaxation effects (considered in the second step) has been discussed thoroughly. The influence of the first hydration sphere and the bulk solvent effects has been investigated as well.Another issue that has been questioned is the accuracy of Density Functional Theory for the study of actinide species. This matter has been discussed by comparing its performance to wave-function based correlated methods. The chemical problem chosen was the water exchange in UO22+(H2O)5. This reaction can proceed via three pathways, the associative, the dissociative and the symmetric interchange. We looked at the two former ones using a model with one additional water in the second hydration sphere.The last part of the thesis dealt with the spectroscopy of coordinated Uranyl(V). Absorption spectrum of Uranyl(V) with various ligands has been recorded. The first sharp absorption band in the Near Infrared region were assigned to the Uranium centered 5f-5f transitions, but uncertainties remained for the assignment of transitions observed in the Visible region. We computed the spectra of naked UO2+ and [UO2(CO3)3]5- to elucidate the spectral changes induced by the carbonate ligands. / Cecile Danilo takes her PhD in collaboration with Uniersité Lille 1 under the cotutelle system
|
5 |
Dissociative Recombination of Astrochemically Interesting IonsHamberg, Mathias January 2010 (has links)
In this thesis the major work described concerns experimental determination of the dissociative recombination (DR) reaction for several molecular ions of astrochemical interest. DR is the process where an electron recombines with a molecular ion to form an excited neutral that disintegrates into two or more neutral fragments to release the gained excess energy. It is very efficient under cold conditions and therefore ubiquitously occurring in interstellar environments such as dark clouds and plays an important role in aeronomical plasmae, lightnings and in man-made plasmas such as in combustion engines and fusion reactors. Although DR reactions are crucial processes in all these environments, product branching fractions of DR reactions have proven to be very unpredictable and present one of the great remaining challenges for theoreticians. The experimental work includes determination of reaction rates and product distribution of DR of complex ions such as protonated alcohols and ethers. The following species have been investigated and are discussed in this thesis: CH3OH2+ (protonated methanol), CD3OD2+ (deuteronated methanol), CD3OCD2+ (methoxymethyl cation), CD3CDOD+ (deuteronated acetaldehyde), CH3CH2OH2+ (protonated ethanol) and (CD3)2OD+ (deuteronated dimethyl ether). The results of these measurements are used in astrochemical model calculations in which the rates used hitherto greatly have been based on educated guesses. Employing the outcome of the DR investigations of the CH3OH2+ and CD3OD2+ ions have shown a great impact on such models. The DR investigations have been followed up by astronomical observations. Theoretical models and laboratory experiments show that methanol should be formed from CO on cold grains. This scenario was tested by astronomical observations of gas associated with young stellar objects (YSOs). Two independent tests were showing consistency with methanol formation on grain surfaces. / I den här avhandlingen redovisas mitt arbete som till stor del baseras på experimentell bestämning av dissociativa rekombinations (DR) processer för molekylära joner av astrokemiskt intresse. DR är en process där en elektron rekombinerar med en molekylär jon som splittras up i två eller fler neutrala fragment för att göra sig av med den extra energi som erhållits. Processen är väldigt effektiv i kalla miljöer varför den är allestädes återkommande i omgivningar som interstellära moln och kometkoman och spelar en betydande roll i aeronomiska plasman, blixturladdningar men även i mänskligt skapade plasman såsom de i förbränningsmotorer och fusionsreaktorer. Det har dock visat sig att produkt distributionsförhållandena från DR reaktioner är mycket oförutsägbara och kvarstår som en av de stora återstående utmaningarna för teoretiker. Det experimentella arbetet består av bestämning av reaktionshastigheter samt produktdistribution för DR av komplexa joner som protonerade alkoholer och etrar. De följande jonerna har blivit undersökta och diskuteras i denna avhandling: CH3OH2+ (protonerad metanol), CD3OD2+ (deuteronerad metanol), CD3OCD2+ (metoxymetyl katjon), CD3CDOD+ (deuteronerad acetaldehyd), CH3CH2OH2+ (protonerad etanol) och (CD3)2OD+ (deuteronerad dimetyleter). Resultaten av mätningarna används i astrokemiska modelberäkningar i vilka reaktionshastigheterna som hittills använts till stor del baserats på kvalificerade gissningar. Insättning av resultaten av CH3OH2+ och CD3OD2+ jonerna har visat sig ha en stor effekt på sådana modeller. DR undersökningarna har följts upp av astronomiska observationer. Teoretiska modeller och laboratorieundersökningar visar att metanol borde kunna formas från CO på kalla iskornsytor, detta scenario har testats med astronomiska observationer av gas som associeras med unga stjärnor. Två oberoende undersökningar visade på förenlighet med metanolformation på kornytor. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: In press. Paper 3: Manuscript. Paper 5: Manuscript.
|
6 |
Theoretical modeling of x-ray and vibrational spectroscopies applied to liquid water and surface adsorbatesLjungberg, Mathias P. January 2010 (has links)
This thesis presents results of theoretical modeling of x-ray and vibrational spectroscopies applied to liquid water and to CO adsorbed on a Ni(100) surface. The Reverse Monte Carlo method is used to search for water structures that reproduce diffraction, IR/Raman and x-ray absorption by fitting them to experimental data and imposed constraints. Some of the structures are created to have a large fraction of broken hydrogen bonds because recent x-ray absorption and emission studies have been seen to support the existence of such structures. In the fitting procedure a fast way of computing the IR/Raman spectrum for an isolated OH stretch is used, where the frequency is represented by the electric field projected in the direction of the stretch coordinate. This method is critically evaluated by comparing it to quantum chemical cluster calculations. Furthermore, the x-ray emission spectrum of water is investigated, the modeling of which is complicated by the necessity of including vibrational effects in the spectrum calculations due to a dissociative intermediate state. Based on the Kramers-Heisenberg formula a new semi-classical method is developed to include vibrational effects in x-ray emission calculations. The method is seen to work very well for a one-dimensional test system. Moreover, x-ray absorption and emission are implemented in a periodic Density Functional Theory code which is applied to ice and to the surface adsorbate system CO on Ni(100). / Den här avhandlingen presenterar resultat av teoretisk modellering av röntgen- och vibrationella spektroskopier applicerade på flytande vatten och på CO adsorberat på en Ni(100) -yta. Reverse Monte Carlo-metoden används till att söka efter vattenstrukturer som reproducerar diffraktion, IR/Raman, röntgenabsorption och emission genom att anpassa strukturerna till experimentella data samt till pålagda restriktionsvillkor. Vissa av strukturerna är skapade så att de har en stor andel brutna vätebindningar eftersom nya röntgenabsorptions- och emissionsexperiment har setts stödja förekomsten av sådana strukturer. I anpassningsprocessen används en metod för att snabbt beräkna IR/Raman-spektrum för en isolerad OH-stretch, där frekvensen representeras av det elektriska fältet projicerat i stretch-koordinatens riktning.Vi utvärderar kritiskt denna metod genom att jämföra den med kvantkemiska klusterberäkningar. Vidare undersöks vattens röntgenemissionsspektrum, vars modellering kompliceras av nödvändigheten att inkludera vibrationella effekter i spektrumberäkningarna på grund av ett dissociativt intermediärt tillstånd. Baserat på Kramers-Heisenbergformeln utvecklas en ny semiklassisk metod som inkluderar vibrationella effekter. Metoden visar sig fungera mycket väl för ett endimensionellt testsystem. Dessutom implementerar vi röntgenabsorption och emission i en periodisk Täthetsfunktionalteorikod som vi sedan applicerar på is och på ett ytadsorbatsystem: CO på Ni(100). / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript. Paper 6: Manuscript.
|
7 |
Spectroscopic study of titanium monohydride and storage ring experimentsDanielsson, Mathias January 2008 (has links)
<p>This thesis describes two projects, spectroscopy of the astrophysically relevant molecule TiH and its isotopologue TiD, and the dissociative recombination (DR) reaction of astrophysically and atmospherically relevant molecules. Emphasis in the thesis is on the first project.</p><p>A series of laser aided spectroscopic studies of TiH/TiD has been carried out. A search for forbidden transitions in the (green) B-X band of TiH was performed. This was followed by a rather bitter fight for the analysis of the perturbed and congested B-X band of TiD, and this was finally rewarding. A substantial extension of a previously reported analysis of this band was performed. The new analysis includes transitions between higher vibrational levels never previously identified. This made it possible to report the first experimentally derived equilibrium constants for the TiH/TiD molecules. There is a need for such results for metal hydrides in the work of calculating the opacity of the atmospheres of cool M and L type stars.</p><p>The DR storage ring experiments have been carried out at the ion storage ring CRYRING in Stockholm. Measurements of the branching fractions and DR rate constants of molecular ions have been done. These results find use in the modeling of the chemistry in interstellar clouds as well as of atmospheres, like the one of Titan, one of the moons of Saturn, which was recently visited by the spacecraft Cassini.</p>
|
8 |
Spectroscopic study of titanium monohydride and storage ring experimentsDanielsson, Mathias January 2008 (has links)
This thesis describes two projects, spectroscopy of the astrophysically relevant molecule TiH and its isotopologue TiD, and the dissociative recombination (DR) reaction of astrophysically and atmospherically relevant molecules. Emphasis in the thesis is on the first project. A series of laser aided spectroscopic studies of TiH/TiD has been carried out. A search for forbidden transitions in the (green) B-X band of TiH was performed. This was followed by a rather bitter fight for the analysis of the perturbed and congested B-X band of TiD, and this was finally rewarding. A substantial extension of a previously reported analysis of this band was performed. The new analysis includes transitions between higher vibrational levels never previously identified. This made it possible to report the first experimentally derived equilibrium constants for the TiH/TiD molecules. There is a need for such results for metal hydrides in the work of calculating the opacity of the atmospheres of cool M and L type stars. The DR storage ring experiments have been carried out at the ion storage ring CRYRING in Stockholm. Measurements of the branching fractions and DR rate constants of molecular ions have been done. These results find use in the modeling of the chemistry in interstellar clouds as well as of atmospheres, like the one of Titan, one of the moons of Saturn, which was recently visited by the spacecraft Cassini.
|
9 |
Molecular electronic, vibrational and rotational motion in optical and x-ray fieldsGavrilyuk, Sergey January 2009 (has links)
The subject of this theoretical study is the role ofelectronic structure as well as of rotational and vibrational motionson interactions between molecules and electromagnetic radiation,ranging from optical to x-ray. The thesis concerns both linear and nonlinear regimes of the light-matter interaction. The first part of the thesis is devoted to propagation of opticalpulses with different time-structure through various nonlinear absorbers.First we explain the double-exponential decay of fluorescence caused by photobleaching of pyrylium salt irradiated by a train of short (100 fs) optical pulses. The main reason for this effect is the transversal inhomogeneity of the light beam which makes the dynamics of the photobleaching differ in the core of the pulse and on its periphery. We also explore the optical power limitingof C60 fullerene irradiated by either microsecond optical pulses or a picosecond pulse trains. Enhancement of nonlinear absorption is caused by strong triplet-triplet absorption that becomes important due toelongation of the interaction time.Here we show the importance of the repetitionrate for the optical power limiting performance.The second part of the thesis addresses the interaction of optical and x-rayfields with rotational degrees of freedom of molecules. In this part the main attention is paid to the rotational heating caused by the recoil, experienced by molecules due to the ejection of photoelectrons. We have quantitatively explained two qualitatively different experiments with the N2 molecule.We predict the interference modulation of the recoil-induced shift,which is a shift of the photoelectron line caused by the rotational recoil effect, as a function of the photon energy.The developed theory also explains the rotational heating ofmolecules observed in the optical fluorescence induced by x-ray radiation.Based on this explanation, we suggest a new scheme of the optical fluorescence induced by x-rays that allows to detect the recoil effect via the recoil-inducedsplitting of the optical resonance.The last part of the thesis focuses on multi-mode nuclear dynamics of the resonant Auger scattering from the C2H2 molecule, that was the subject of a recent experimental study.Here we develop a theory that explains the observed vibrationalscattering anisotropy. We have found that three qualitatively different mechanisms are responsible for this phenomenon. The first mechanism is the interference of the direct and resonance scattering channels. The second mechanismis the interference of the resonant scattering channels through core excitedstate with the orthogonal orientation of the vibrational modes of core excitedstate. The Young's double slit like interference of the quantum pathways through the double-well potential of the bending motion of core excited state is the third mechanism of the vibrational scattering anisotropy. / QC 20100713
|
10 |
Structure, Bonding and Chemistry of Water and Hydroxyl on Transition Metal SurfacesAndersson, Klas January 2006 (has links)
<p>The structure, bonding and chemistry of water and hydroxyl on metal surfaces are presented. Synchrotron based x-ray photoelectron- and x-ray absorption spectroscopy along with density functional theory calculations mainly form the basis of the results. Conditions span the temperature range 35 - 520 K and pressures from ultra-high vacuum (~10 fAtm) to near ambient pressures (~1 mAtm). The results provide, e.g, new insights on the importance of hydrogen bonding for surface chemical kinetics.</p><p>Water adsorbs intact on the Pt(111), Ru(001) and Cu(110) surfaces at low temperatures forming 2-dimensional wetting layers where bonding to the metal (M) mainly occurs via H<sub>2</sub>O-M and M-HOH bonds. Observed isotope differences in structure and kinetics for H<sub>2</sub>O and D<sub>2</sub>O adsorption on Ru(001) are due to qualitatively different surface chemistries. D<sub>2</sub>O desorbs intact but H<sub>2</sub>O dissociates in kinetic competition with desorption similar to the D<sub>2</sub>O/Cu(110) system. The intact water layers are very sensitive to x-ray and electron induced damage.</p><p>The mixed H<sub>2</sub>O:OH phase on Ru(001) consists of stripe-like structures 4 to 6 Ru lattice parameters wide where OH decorates the edges of the stripes. On Pt(111), two different long-range ordered mixed H<sub>2</sub>O:OH structures are found to be inter-related by geometric distortions originating from the asymmetric H-bond donor-acceptor properties of OH towards H<sub>2</sub>O.</p><p>Water adsorption on Cu(110) was studied at near ambient conditions and compared to Cu(111). Whereas Cu(111) remains clean, Cu(110) holds significant amounts of water in a mixed H<sub>2</sub>O:OH layer. The difference is explained by the differing activation barriers for water dissociation, leading to the presence of OH groups on Cu(110) which lowers the desorption kinetics of water by orders of magnitude due to the formation of strong H<sub>2</sub>O-OH bonds. By lowering the activation barrier for water dissociation on Cu(111) by pre-adsorbing atomic O, generating adsorbed OH, similar results to those on Cu(110) are obtained.</p>
|
Page generated in 0.0543 seconds