Spelling suggestions: "subject:"kenaf core"" "subject:"enaf core""
1 |
Structural, Thermal and Acoustic Performance of Polyurethane Foams for Green BuildingsNar, Mangesh 12 1900 (has links)
Decreasing the carbon footprint through use of renewable materials has environmental and societal impact. Foams are a valuable constituent in buildings by themselves or as a core in sandwich composites. Kenaf is a Southeast USA plant that provides renewable filler. The core of the kenaf is porous with a cell size in a 5-10 micrometer range. The use of kenaf core in foams represents a novel multiscalar cellular structural composite. Rigid polyurethane foams were made using free foaming expansion with kenaf core as filler with loadings of 5, 10 and 15 %. Free foaming was found to negatively affect the mechanical properties. An innovative process was developed to introduce a constraint to expansion during foaming. Two expansion ratios were examined: 40 and 60 % (decreasing expansion ratio). MicroCT and SEM analysis showed a varying structure of open and closed cell pores. The mechanical, thermal insulation, acoustic properties were measured. Pure PU foam showed improved cell size uniformity. Introducing kenaf core resulted in decreasing the PU performance in the free expansion case. This was reversed by introducing constraints. To understand the combined impact of having a mixed close cell and open cell architecture, finite element modeling was done using ANSYS. Models were created with varying percentages of open, closed, and bulk cells to encompass entire range of foam porosities. Net zero energy building information modelling was conducted using EnergyPlus was conducted using natural fiber composite skins. Environmental impacts for instance global warming potential, acidification, eutrophication, fossil fuel consumption, ozone depletion, and smog potential of the materials used in construction was studied using life cycle assessment. The results showed improvement on energy consumption and carbon footprint. Read more
|
2 |
Sustainable Ecofriendly Insulation Foams for Disaster Relief HousingChitela, Yuvaraj Reddy 05 1900 (has links)
Natural disasters are affecting a significant number of people around the world. Sheltering is the first step in post-disaster activities towards the normalization of the affected people's lives. Temporary housing is being used in these cases until the construction of permanent houses are done. Disposal of temporary housing after use is leading to a significant environmental impact because most of them are filled with thermally insulative polymer foams that do not degrade in a short period. To reduce these problems this work proposes to use foams made with compostable thermoplastic polylactic acid (PLA) and degradable kenaf core as filler materials; these foams are made using CO2 as blowing agent for insulation purposes.
Foams with PLA and 5%, 10% and 15% kenaf core were tested. Different properties and their relations were examined using differential scanning calorimetry (DSC), thermal conductivity, mechanical properties, scanning electron microscopy (SEM), x-ray μ-computed tomography (μ-CT) and building energy simulations were done using Energy Plus by NREL. The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity display a noticeable improvement. Read more
|
Page generated in 0.2648 seconds