• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 16
  • 12
  • 10
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 171
  • 29
  • 29
  • 23
  • 22
  • 19
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Neuartige hochselektive Katalysatoren für die asymmetrische Ketonhydrierung

Friedrich, Denise January 2009 (has links)
Bayreuth, Univ., Diss., 2009.
22

Diamine(phosphine)ruthenium(II) complexes and their application in the catalytic hydrogenation of a, b-unsaturated ketones in homogeneous and heterogeneous phase

Warad, Ismail Khalil. Unknown Date (has links)
University, Diss., 2003--Tübingen.
23

Intramolecular epoxidation using oxone

Clarke, Paul Andrew January 1996 (has links)
No description available.
24

Asymmetrische Weitz-Scheffer-Epoxidierung mit optisch aktiven Hydroperoxiden oder Phasentransferkatalysatoren / Asymmetric Weitz-Scheffer Epoxidation with Optically Active Hydroperoxides or Phase-Transfer Catalysts

Degen, Hans-Georg January 2002 (has links) (PDF)
In der vorliegenden Dissertation werden optisch aktive Hydroperoxide I als enantioselektive Oxidationsmittel in der Weitz-Scheffer-Epoxidierung von Enonen II eingesetzt. Dabei sollten zunächst die besten Reaktionsbedingungen für eine effektive asymmetrische Induktion gefunden werden, um anhand dieser den Mechanismus des enantioselektiven Sauerstofftransfers aufzuklären. In einer weiteren Studie werden Chinconin- und Chinconidin-abgeleitete optisch aktive Phasentransferkatalysatoren (PTK) IV zur asymmetrischen Epoxidierung von Enonen II mit racemischen Hydroperoxiden I genutzt, wobei vordergründig die kinetische Racematspaltung der verwendeten Hydroperoxide I untersucht werden sollte. Darauf aufbauend wurde eine höchst effektive Methode zur enantioselektiven Epoxidierung von Isoflavonen V mit kommerziell erhältlichen, achiralen Hydroperoxiden entwickelt. 1. Die Optimierung der Reaktionsbedingungen an Chalkon IIa zeigt, dass die höchste Enantioseitendifferenzierung mit (S)-(-)-1-Phenylethylhydroperoxid (Ia) und KOH in Schema A: Asymmetrische Weitz-Scheffer-Epoxidierung mit optisch aktiven Hydroperoxiden I und den Basen KOH oder DBU als Katalysatoren Acetonitril bei –40 °C möglich ist. Dabei bildet sich das (alphaS,betaR)-Epoxid IIIa in 51 Prozent ee. Im Gegensatz dazu wird in Toluol bei 20 °C mit der Base DBU das entgegengesetzt konfigurierte (alphaR,betaS)-Epoxid IIIa in einem Enantiomerenüberschuss von 40 Prozent gebildet. Die Art der Base beeinflusst demnach grundlegend den stereochemischen Verlauf der Reaktion. Um diesen Effekt mechanistisch zu ergründen wird der elektronische Charakter der Arylreste im Enon II systematisch variiert, was allerdings nur zu einer geringen Veränderung der Enantioselektivität führt. Einen größeren Einfluss auf das Ausmaß der Enantioseitendifferenzierung in dieser asymmetrischen Weitz-Scheffer-Epoxidierung hat, sowohl bei der Reaktionsführung mit DBU in Toluol als auch mit KOH in CH3CN, der sterische Anspruch des beta-Substituenten im Enon II. Aufgrund der maßgeblichen Signifikanz der Größe des beta-Substituenten wird eine Templatstruktur T+ (Abbildung A) vorgeschlagen, in der eine sterische Wechselwirkung zwischen dem beta-Substituenten des Enons II und dem Hydroperoxyanion I- den Abbildung A: Bevorzugte Anordnungen in der Templatstruktur für die KON-vermittelte und die DBU-vermittelte Epoxidierung stereochemischen Verlauf der Epoxidierung bestimmt. Das Aggregat aus Substrat, Hydroperoxid und Gegenion wird in Form eines Templats T+ durch das K+-Ion oder das protonierte Amin DBU-H+ zusammengehalten. Dadurch wird den entgegengesetzten Enantioselektivitäten Rechnung getragen, die für diese beiden Basen beobachtet werden. Aus Abbildung A wird ersichtlich, dass die unterschiedliche Größe der K+- oder DBU-H+-Kationen und des beta-Substituenten im Templat wichtig für eine effektive Diskriminierung der beiden möglichen Angriffe T+-(Si) und T+-(Re) ist. Für das relativ kleine Kaliumion dominiert die Wechselwirkung zwischen dem beta-Substituenten und dem Hydroperoxid I. Diese wird im T+-(Si)-Angriff minimiert, indem das Wasserstoffatom am stereogenen Zentrum des Hydroperoxids I auf der Seite des Enons II steht. In der Epoxidierung mit der sterisch anspruchsvolleren Base DBU tritt die Wechselwirkung zwischen DBU-H+ und dem Hydroperoxid im Templat in den Vordergrund, was den Angriff auf der Re-Seite bedingt. Demnach werden mit KOH die besten Enantioselektivitäten für große beta-Substituenten beobachtet, wohingegen für die Amin-vermittelte Epoxidierung eine große Base, wie DBU, vorteilhaft ist. Sowohl für KOH als auch für DBU als Basenkatalysatoren wird die Validität der Templatstruktur durch weitere Variation der Reaktionsbedingungen geprüft. Wenn K+ durch den Kronenether 18-Krone-6 komplexiert wird oder anstelle von DBU-H+ eine nicht-koordinierende Schwesinger Base verwendet wird, das Templat also nicht durch Koordination gebildet werden kann, werden deutlich niedrigere Enantioselektivitäten in der Epoxidierung beobachtet. Die Notwendigkeit der S-cis-Konformation des Enons II für die Bildung des Templats, wird durch Untersuchungen mit konformationell fixierten Enonen untermauert. So wird die Enantioselektivität bei der Epoxidierung eines S-cis-fixierten Enons (IIb) auf bis zu 90 Prozent ee erhöht, während sie bei einer S-trans-Fixierung des Enons deutlich auf < 5 Prozent ee abfiel. Fazit: Mit den optisch aktiven Hydroperoxiden I wird in der Weitz-Scheffer-Epoxidierung durch die Wahl geeigneter Basen, KOH oder DBU, sowohl das (alphaS,betaR)-Epoxid III (bis zu 90 Prozent ee) als auch das (alphaR,betaS)-Epoxid (bis zu 72 Prozent ee) erhalten. Welches Enantiomer überwiegt kann dabei allein durch die Wahl der Base gesteuert werden. Die Enantioseitendifferenzierung wird durch sterische Wechselwirkungen in einem Templat aus Enon II, Hydroperoxid I und den Kationen K+ oder DBU-H+ bestimmt. Die kinetische Racematspaltung chiraler Hydroperoxide I durch Weitz-Scheffer-Epoxidierung mit optisch aktiven Chinconin-basierten Phasentransferkatalysatoren (PTK) IV wird untersucht, bei der als willkommenes „Nebenprodukt" optisch aktive Isoflavonepoxide VI (Schema B) mit bis zu 92 Prozent ee entstehen. Die Racematspaltung ist Schema B: Kinetische Racematspaltung des chiralen Hydroperoxids Ia mittels Weitz-Scheffer-Epoxidierung und dem optisch aktiven PTK IV jedoch nicht effektiv, es werden ee-Werte von maximal 33 Prozent erzielt. Auf dieser Basis wird eine Methode zur asymmetrischen Epoxidierung der Isoflavonen (V) (Schema C) mit dem Schema C: Enantioselektivitäten für die Epoxidierung der Enone IIb,c und des Isoflavons Vb in Anwesenheit des PTK IV kommerziell verfügbaren Cumylhydroperoxid entwickelt, die für das Isoflavon Vb bis zu 98 Prozent ee zu Gunsten des (1aR,7aS)-Epoxids ergibt. Die hohe Enantioselektivität wird mit dem Templat A (Schema D) erklärt, in dem eine H-Brücke von der Hydroxy-Funktion des PTK IV Schema D: Wasserstoffbrückengebundene Templatstrukturen A und B zum endocyclischen Ethersauerstoffatom des Isoflavons V ausgeht. Die Relevanz einer solchen H-Brücke ist durch Methylierung der Hydroxy-Funktion des PTK IV demonstriert. Zudem ist die Wichtigkeit dieses Ethersauerstoffatoms durch die Tatsache untermauert, dass das konformationell ähnliche Enon IIc (Schema C) nahezu unselektiv epoxidiert wird (18 Prozent ee). Eine analoge H-Brücke nunmehr zum Carbonylsauerstoffatom des S-cis-fixierten Enons IIb wird als Erklärung für dessen hoch enantioselektive Epoxidierung (95 Prozent ee) postuliert (Templat B, Schema D). Fazit: Die asymmetrische Weitz-Scheffer-Epoxidierung mit dem optisch aktiven Phasentransferkatalysator IV wird zur Herstellung fast enantiomerenreiner Epoxide (bis zu 98 Prozent ee) genutzt. Für die Enantioseitendifferenzierung zeigt sich die Ausbildung einer H-Brücke zwischen PTK IV und Substrat II oder V als essentiell. In der kinetischen Racematspaltung chiraler Hydroperoxide I ist diese Epoxidierung nicht effektiv. / In the present dissertation, optically active hydroperoxides I are employed as enantioselective oxidants in the asymmetric Weitz-Scheffer epoxidation of enones II. On the basis of the reaction conditions, optimized for high enantioselectivities, the mechanistic details of this asymmetric oxygen transfer are presented. In the second part of the study, chinconine-derived phase-transfer catalysts (PTC) IV are used for the asymmetric epoxidation of enones II with racemic hydroperoxides I. The primary objective of this part is the kinetic resolution of the racemic hydroperoxides. Based on the results, a highly effective method for the enantioselective epoxidation of isoflavones V with commercially available, achiral hydroperoxides is described. 1. The optimization of the reaction conditions shows that the highest enantioselectivities may be obtained with (S)-(-)-1-phenylethyl hydroperoxide Ia and KOH in acetonitrile at –40 °C, namely 51 per cent ee of the (alphaS,betaR)-epoxide IIIa (Scheme A). On the contrary, with DBU as base Schema A: Asymmetric Weitz-Scheffer Epoxidation with the Optically Active Hydroperoxide I and KOH or DBU as Base Catalysts in toluene at 20 °C, the opposite (alphaR,betaS)-epoxide IIIa enantiomer is obtained in 40 per cent ee. Thus, the nature of the base plays a decisive role in the stereochemical course of the reaction. To assess the mechanistic details of this base effect, the substituents in the enone II are varied systematically. Whereas the electronic character of the aryl substituents is found to play a minor role, the steric demand of the beta substituent significantly influences the extent of the enantiofacial differentiation, both in the KOH- and the DBU-mediated epoxidations. The important role of the steric demand, exercised by the beta substituent of the enone II in the stereochemical course of this epoxidation, is rationalized in terms of the template structure T+ (Figure A). This template structure is made up of the enone II and the hydroperoxide anion I-, held together by the templating agent K+ or DBU-H+, which allows to account for both the opposite enantioselectivities observed with the different types of bases, KOH or DBU, and the role of the beta substituent in the enone substrate II, through its steric interaction with the hydroperoxide anion I-. Moreover, it is illustrated that the size of both the templating Figure A: Preferred Arrangement in the Template Structure for the KOH- and DBU-Mediated Epoxidations agent, K+ or DBU-H+, and the beta substituent play a significant role in the discrimination between the T+-(Si) und T+-(Re) attacks. For the relatively small K+ ion, the steric interaction between the beta substituent and the hydroperoxide I dominate. Consequently, the T+-(Si) attack is preferred, in which the hydrogen atom on the stereogenic center of the hydroperoxide is oriented towards the enone II. However, in the case of the DBU base, the more severe steric interaction occurs between the DBU-H+ and the hydroperoxide anion, which leads to the observed (Re)-face attack through the T+-(Re) structure. Thus, the best enantioselectivities are observed for sterically demanding beta substituents in the KOH-catalyzed case, while a large organic base like DBU is advantageous in the amine-mediated epoxidation. The validity of the proposed template structure is tested by further variation of the reaction conditions, both for the KOH- and the DBU-mediated asymmetric epoxidations. If the template cannot be formed through coordination, i.e., the K+ ion is sequestered by the 18-crown-6 ether, or a non-coordinating Schwesinger base is used instead of DBU, substantially lower enatioselectivities result. Furthermore, the fact that the S-cis conformation of the enone functionality is essential for the effective enantiofacial discrimination in the DBU- and the KOH-mediated reactions is indicative for the template structures in Figure A. Thus, the S-cis-fixed enone IIb gives rise to a higher enantioselectivity (up to 90 per cent ee) than the corresponding acyclic substrate, whereas the S-trans-fixed substrate IIc is poorly and unselectively (<5 per cent ee) converted. Conclusion: The asymmetric Weitz-Scheffer epoxidation of the enones II with the optically active hydroperoxides I, catalyzed by KOH or DBU, affords either the (alphaS,betaR)-epoxide III (up to 90 per cent ee) or the (alphaR,betaS)-epoxide (up to 72 per cent ee). As rationale for the fact that the desired enantiomer may be expressed merely by the choice of the base, a template is proposed, composed of the enone II, the hydroperoxide I, and the cation K+ or DBUH+. 2. The Weitz-Scheffer epoxidation with the optically active chinconine-derived phase-transfer catalyst (PTC) IV is explored as a means for the kinetic resolution of chiral hydroperoxides I. Although the kinetic resolution is ineffective and yields the optically active (S)-hydroperoxide Ia (Scheme B) in ee values of only up to 33 per cent, the isoflavone Scheme B: Kinetic Resolution of the Chiral Hydroperoxide I by Means of the Weitz-Scheffer Epoxidation with the Optically Active PTK IV epoxides VI are obtained as valuable “side products” in up to 92 per cent ee. On this basis, a method for the asymmetric epoxidation of the isoflavones V (Scheme C) has been developed in which Schema C: Enantioselectivities for the Epoxidation of the Enones IIb,c and the Isoflavone Vb in the Presence of the PTC IV the commercially available cumyl hydroperoxide has been utilized. The isoflavone Vb is converted to the (1aR,7aS)-epoxide VIb in 98 per cent ee. The high enantioselectivities are rationalized in terms of the template A (Scheme D), in which a hydrogen bond is postulated Schema D: Hydrogen-Bonded Template Structures A and B for the coordination the hydroxy functionality in the PTC IV to the endocyclic ether oxygen atom in the isoflavone V. The necessity of such a hydrogen bond is demonstrated by methylation of the hydroxy functionality in the PTC IV, which diminishes the enantioselectivity dramatically. Moreover, the significance of the ether oxygen atom in the isoflavone IV is substantiated by the scant enantioselectivity (18 per cent ee) observed in the epoxidation of the conformationally similar enone IIc. For the highly enantioselective epoxidation (95 per cent ee) of the S-cis-fixed enone IIb, an analogous hydrogen bond is proposed, to extend from the hydroxy group of the PTC IV to the carbonyl functionality of the enone (template B, Scheme D). Conclusion: In the asymmetric Weitz-Scheffer epoxidation, the optically active phase-transfer catalyst IV derived from cinchonine alkaloid has been employed to prepare essentially enantiomerically pure epoxides (up to 98 per cent). A hydrogen bond between the PTC IV and the substrate I or V is found to be essential for effective enantiofacial differentiation. The Weitz-Scheffer epoxidation proves to be ineffective for kinetic resolution of the racemic hydroperoxides I;
25

Targeting Cancer Metabolism with Ketosis and Hyperbaric Oxygen

Poff, Angela M. 10 June 2014 (has links)
Cancer cells exhibit an abnormal metabolic phenotype characterized by glycolysis and lactate fermentation in the presence of oxygen, a phenomenon known as the Warburg effect. This dysregulated metabolism plays an important role in every aspect of cancer progression, from tumorigenesis to invasion and metastasis. The Warburg effect is a common phenotype shared by most, if not all, cancer types. It is especially prominent in metastatic tumors, which are notoriously resistant to treatment and responsible for the majority of cancer-related deaths. Thus, metabolic therapies which target the Warburg effect could offer novel therapeutic options for most cancer patients, including those with aggressive or late-stage cancers. The ketogenic diet is a high fat, low carbohydrate diet that induces a physiological state of nutritional ketosis - decreased blood glucose and elevated blood ketones. It has been investigated as a cancer therapy for its potential to exploit the Warburg effect by restricting glucose availability to glycolysis-dependent tumors, and has been reported to slow cancer progression in some animal models as well as in anecdotal reports and small clinical studies in humans. Interestingly, there is some evidence that the elevation in blood ketones induced by the ketogenic diet contributes to its anti-cancer effects, suggesting that ketone supplementation could possibly inhibit cancer progression on its own. Rapid growth outstrips a tumor's ability to adequately perfuse its tissue, creating regions of tumor hypoxia which exacerbate the Warburg effect and promote a malignant phenotype. Hyperbaric oxygen therapy is the administration of 100% oxygen at elevated barometric pressure. It supersaturates the blood with oxygen, increasing its diffusion distance into the tissues, and can therefore be used to increase intratumoral pO2 and reverse tumor hypoxia. Here we present evidence that the ketogenic diet, ketone supplementation, and hyperbaric oxygen therapy work individually and in combination to slow progression and extend survival in the VM-M3 model of metastatic cancer. This study strongly suggests that these cost effective, non-toxic metabolic therapies should be further evaluated in animal and human studies to determine their potential clinical use.
26

Ketone Production from the Thermal Decomposition of Carboxylate Salts

Landoll, Michael 1984- 14 March 2013 (has links)
The MixAlco process uses an anaerobic, mixed-culture fermentation to convert lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so that only carboxylate salts, water, and minimal impurities remain. Carboxylate salts are concentrated by evaporation and thermally decomposed into ketones. The ketones can then be chemically converted to a wide variety of chemicals and fuels. The presence of excess lime in the thermal decomposition step reduced product yield. Mixtures of calcium carboxylate salts were thermally decomposed at 450 degrees C. Low lime-to-salt ratios (g Ca(OH)2/g salt) of 0.00134 and less had a negligible effect on ketone yield. In contrast, salts with higher lime-to-salt ratios of 0.00461, 0.0190, and 0.272 showed 3.5, 4.6, and 9.4% loss in ketone yield, respectively. These losses were caused primarily by increases in tars and heavy oils; however, a three-fold increase in hydrocarbon production occurred as well. To predict ketone product distribution, a random-pairing and a Gibbs free energy minimization model were applied to thermal decompositions of mixed calcium and sodium carboxylate salts. Random pairing appears to better predict ketone product composition. For sodium and calcium acetate, two types of mixed sodium carboxylate salts, and two types of mixed calcium carboxylate salts, activation energy (EA) was determined using three isoconversional methods. For each salt type, EA varied significantly with conversion. The average EA for sodium and calcium acetate was 226.65 and 556.75 kJ/mol, respectively. The average EA for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. The average EA for the two mixed calcium carboxylate salts were 232.78, and 176.55 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model was the best overall. Possible reactor designs and configurations that address the challenges associated with the continuous thermal decomposition of carboxylate salts are also presented and discussed. Methods of fermentation broth clarification were tested. Flocculation showed little improvement in broth purity. Coagulation yielded broth of 93.23% purity. Filtration using pore sizes from 1 micrometer to 240 Daltons increased broth purity (90.79 to 98.33%) with decreasing pore size.
27

Analysis of the possible role of a ketone body, acetone, in the adjustment of caloric intake

Meliza, Larry Lynn, 1942- January 1973 (has links)
No description available.
28

Regioselective Asymmetric a,a-Bisalkylation of Ketones via N-Amino Cyclic Carbamate Chiral Auxiliaries: Methodology Development and Application to the Total Synthesis of both (+)- and (-)-Stigmolone and Apratoxin D

Wengryniuk, Sarah Elizabeth January 2012 (has links)
<p>The &#945;-alkylation of ketones is a transformation of central importance to organic synthesis. Our lab recently introduced the N-amino cyclic carbamate (ACC) chiral auxiliaries for asymmetric ketone &#945;-alkylation. ACCs provide significant advantages over existing asymmetric ketone alkylation methods as they are easy to introduce, both deprotonation and alkylation can be run at relatively mild temperatures, stereoselectivity of alkylation is excellent and auxiliary removal is facile. A unique feature of ACCs is their ability to control the regioselectivity of deprotonation through what we have termed Complex Induced Syn-Deprotonation. In what follows, we describe several projects relating to the development and synthetic application of ACCs.</p><p>An optimized synthesis of our most successful ACC auxiliary was developed, including an improved method for the formation of the key N-N hydrazide bond. </p><p>A detailed mechanistic investigation of four ACC auxiliaries was conducted, examining the regio- and stereoselectivity of the alkylations at the level of the ACC hydrazone. This work culminated in a theoretical study of ACC auxiliaries, conducted through a collaboration with the Houk Group at UCLA. </p><p>We also describe the use of ACCs in the development of the first method for the regiocontrolled asymmetric &#945;,&#945;-bisalkylation of ketones. The method proceeds in excellent yield and with >99:1 diastereoselectivity. This method was also extended to the asymmetric &#945;,&#945;,&#945;',&#945;'-tetraalkylation of ketones, enabled by the development of a mild, epimerization-free LDA-mediated isomerization of the &#945;,&#945;-bisalkylated ACC hydrazones.</p><p>Additionally, we discuss three synthetic applications of the ACC &#945;,&#945;-bisalkylation methodology. We report an asymmetric formal synthesis of (+)- and (-)-stigmolone, as well as two approaches to the polyketide fragment of the novel cyclic depsipeptide apratoxin D, which have led to the completion of the first asymmetric total synthesis of apratoxin D.</p> / Dissertation
29

Lipid metabolism in sheep : a study of the metabolism of ketone bodies and carnitine in various tissues of the sheep

Koundakjian, Patricia January 1974 (has links)
v, 189 leaves ; 26 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.1974) from the Dept. of Agricultural Biochemistry and Soil Science, University of Adelaide
30

Effiziente Synthese hochsubstituierter enantiomerenreiner Cyclohexenone und Tetrahydroxanthenone

Ohnemüller, Ulrike January 2005 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2005

Page generated in 0.0351 seconds