Spelling suggestions: "subject:"dey frames"" "subject:"dey arames""
1 |
User-centred video abstractionDarabi, Kaveh January 2015 (has links)
The rapid growth of digital video content in recent years has imposed the need for the development of technologies with the capability to produce condensed but semantically rich versions of the input video stream in an effective manner. Consequently, the topic of Video Summarisation is becoming increasingly popular in multimedia community and numerous video abstraction approaches have been proposed accordingly. These recommended techniques can be divided into two major categories of automatic and semi-automatic in accordance with the required level of human intervention in summarisation process. The fully-automated methods mainly adopt the low-level visual, aural and textual features alongside the mathematical and statistical algorithms in furtherance to extract the most significant segments of original video. However, the effectiveness of this type of techniques is restricted by a number of factors such as domain-dependency, computational expenses and the inability to understand the semantics of videos from low-level features. The second category of techniques however, attempts to alleviate the quality of summaries by involving humans in the abstraction process to bridge the semantic gap. Nonetheless, a single user’s subjectivity and other external contributing factors such as distraction will potentially deteriorate the performance of this group of approaches. Accordingly, in this thesis we have focused on the development of three user-centred effective video summarisation techniques that could be applied to different video categories and generate satisfactory results. According to our first proposed approach, a novel mechanism for a user-centred video summarisation has been presented for the scenarios in which multiple actors are employed in the video summarisation process in order to minimise the negative effects of sole user adoption. Based on our recommended algorithm, the video frames were initially scored by a group of video annotators ‘on the fly’. This was followed by averaging these assigned scores in order to generate a singular saliency score for each video frame and, finally, the highest scored video frames alongside the corresponding audio and textual contents were extracted to be included into the final summary. The effectiveness of our approach has been assessed by comparing the video summaries generated based on our approach against the results obtained from three existing automatic summarisation tools that adopt different modalities for abstraction purposes. The experimental results indicated that our proposed method is capable of delivering remarkable outcomes in terms of Overall Satisfaction and Precision with an acceptable Recall rate, indicating the usefulness of involving user input in the video summarisation process. In an attempt to provide a better user experience, we have proposed our personalised video summarisation method with an ability to customise the generated summaries in accordance with the viewers’ preferences. Accordingly, the end-user’s priority levels towards different video scenes were captured and utilised for updating the average scores previously assigned by the video annotators. Finally, our earlier proposed summarisation method was adopted to extract the most significant audio-visual content of the video. Experimental results indicated the capability of this approach to deliver superior outcomes compared with our previously proposed method and the three other automatic summarisation tools. Finally, we have attempted to reduce the required level of audience involvement for personalisation purposes by proposing a new method for producing personalised video summaries. Accordingly, SIFT visual features were adopted to identify the video scenes’ semantic categories. Fusing this retrieved data with pre-built users’ profiles, personalised video abstracts can be created. Experimental results showed the effectiveness of this method in delivering superior outcomes comparing to our previously recommended algorithm and the three other automatic summarisation techniques.
|
2 |
A Nano-Drone Safety ArchitectureSexton, Connor J 01 June 2022 (has links) (PDF)
As small-form factor drones grow more intelligent, they increasingly require more sophisticated capabilities to record sensor data and system state, ensuring safe and improved operation. Already regulations for black boxes, electronic data recorders (EDRs), for determining liabilities and improving the safety of large-form factor autonomous vehicles are becoming established. Conventional techniques use hardened memory storage units that conserve all sensor (visual) and system operational state; and N-way redundant models for detecting uncertainty in system operation. For small-form factor drones, which are highly limited by weight, power, and computational resources, these techniques become increasingly prohibitive. In this paper, we propose a safety architecture for resource constrained autonomous vehicles that enables the development of safer and more efficient nano-drone systems. The insight for the proposed safety architecture is that the regular structure of data-driven models used to control drones can be exploited to efficiently compress and identify key events that should be conserved in the EDR subsystem. We describe an implementation of the architecture, including hardware and software support, and quantify the benefits of the approach. We show that the proposed techniques can increase the amount of recorded flight time by over 10x and reduce energy usage by over 10x for high-resolution systems.
|
3 |
Interaktivní editor a prohlížeč animací / Interactive Animation Viewer and EditorDucháč, Michal Unknown Date (has links)
Since the introduction of high end graphical workstations, computer animation has quickly replaced the traditional means of animation. Nowadays computer animation has many applications e.g. video games, motion picture industry, media, weather forecasting and many others. This master thesis discusses various techniques used to created animations using computers. Keyframing, is the most common approach in computer animation. Borrowing its name from the concept of traditional hand animation, the workflow process remained the same. Basic principles of animation using key-frames are explained and an Interactive Animation Editor solution based on keyframing is proposed and the implementation of this editor is described. Editor uses the Kochanek-Bartels interpolation of values between each key-frame.
|
Page generated in 0.0592 seconds