• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

Stefancich, Marco 08 1900 (has links)
The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
2

Kicked-Rotor under the Aharonov-Bohm Effect

Xie, Bor-Dun 01 August 2012 (has links)
The kicked-rotor under the Aharonov-Bohm effect are studyed by using the floquet map, the energy change with different magnetic flux have also being discussed. Finally, the kicked-rotor under the time-dependent magnetic flux are discussed.
3

Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

Zheng, Yindong 08 1900 (has links)
The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the quantum potential is not zero and must be included as part of the quantum kinetic energy for agreement. The numerical data for momentum diffusion of classical kicked rotor is well fit by a power law DNβ in the number of kicks N. In the anomalous momentum diffusion regions due to accelerator modes the exponent β(K) is slightly less than quadratic, except for a slight dip, in agreement with an upper bound (K2/2)N2. The corresponding coefficient D(K) in these regions has three distinct sections, most likely due to accelerator modes with period greater than one. We also show that the local Lyapunov exponent of the classical kicked rotor has a plateau for a duration that depends on the initial separation and then decreases asymptotically as O(t-1lnt), where t is the time. This behavior is consistent with an upper bound that is determined analytically.

Page generated in 0.0409 seconds