• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mantle xenoliths from the Abrahamskraal kimberlite : a craton-margin geotherm

Nowicki, Thomas Edward January 1991 (has links)
The Abrahamskraal kimberlite pipe (group I) occurs approximately 5 km to the south-west of the geophysically defined margin of the Kaapvaal craton in the central Cape Province, and contains a variety of crustal and mantle xenoliths. This study focusses on xenoliths of deep-seated origin (mantle and lower-crustal), and in particular on garnet-orthopyroxene bearing assemblages which are amenable to thermobarometric techniques. Four major types of deep-seated xenolith have been identified, i.e. peridotites, dunites , eclogites, and garnet pyroxenites. The petrographic features and mineral compositions of these xenoliths are described . Pressures and temperatures of equilibration have been calculated primarily using the garnet-orthopyroxene thermometer of Harley (1984), and the Al-in-enstatite barometer of Nickel and Green (1985). The peridotites are coarse-textured (Harte, 1977), magnesium -rich rocks, and are typical examples of the common type I peridotites which generally dominate mantle xenolith suites in kimberlites. Garnet peridotite xenoliths define a geotherm which lies along a typical theoretical conductive geothermal gradient for shield areas (Pollack and Chapman, 1977), and which extends to a maximum pressure of 41 kb (~130 km). Comparison of the Abrahamskraal geotherm with that constructed for the northern Lesotho xenolith suite (calculated using the same thermobarometer couple), suggests that the lithosphere at the Namaqua /Kaapvaal boundary is not significantly thinner or hotter than that underlying the craton. Modelling of the craton boundary under the constraints provided by the Abrahamskraal geotherm, and by the distribution of diamond-bearing kimberlites in southern Africa, indicates that the Abrahamskraal kimberlite has sampled relatively thick, cool , Namaqua lithosphere. It is suggested that, in terms of diamond distribution, the age and magmatic history of the Namaqua lithosphere is of greater significance than its thickness. Two varieties of dunite occur at Abrahamskraal. Coarse-textured dunites with Mg-rich olivine compositions similar to those of the peridotitic olivines, probably originated by similar (but perhaps more extreme) processes to those which formed the peridotites. A finer-grained and relatively Fe-rich variety of dunite may represent ultramafic cumulates formed by fractionation of basic or ultrabasic magmas within the mantle. Two varieties of eclogite have been distinguished. Coarse-grained eclogites which yield relatively high temperature estimates, are believed to have originated from depths similar to those determined for the garnet peridotites, i.e. from the lower lithosphere. A distinctly finer grained variety of eclogite, yields significantly lower temperatures which may be based on frozen-in equilibria. A maximum depth of approximately 87 km (~ 27 kb) has been estimated for these xenoliths, but they may have originated from significantly shallower (possibly lower-crustal) levels. The garnet pyroxenite xenoliths are generally orthopyroxene-rich rocks which contain varying amounts of garnet (8 to 33 %) and clinopyroxene (0 to 64 %). Textural features indicate that the garnet and possibly some of the clinopyroxene has exsolved from an originally A l -rich orthopyroxene. The rocks are significantly more Fe-rich than the peridotite xenoliths, and their constituent minerals show a wide range of Mg/Mg+Fe ratios. The pressure-temperature array defined by the garnet pyroxenites is approximately isothermal, and spans a depth range from approximately 30 to 95 km. It deviates strongly (to higher temperatures) from the ambient geothermal gradient at the time of kimberlite emplacement, as inferred from the garnet peridotite xenoliths. The pressures and temperatures calculated for the garnet pyroxenites are based on mineral equilibria which are believed to have been frozen-in during cooling from an intial high­temperature (probably molten) state. Qualitative modelling of possible cooling paths in pressure-temperature-composition space, indicates that the apparent depth range displayed by the garnet pyroxenites, approximates the true depth range over which these rocks were emplaced. However, the apparent pressures calculated from core compositions are significantly lower than the true pressures at which the original rocks formed . The garnet pyroxenite xenoliths appear to represent a major, possibly Namaqua ­ age (~1000-1400 Ma), magmatic event involving the emplacement of large amounts of mafic magma over a significant depth range in the shallow upper mantle
2

La suite complexe des mégacristaux des kimberlites de Mbuji-Mayi en République Démocratique du Congo: témoins du métasomatisme dans le manteau lithosphérique sous-continental archéen du craton du Congo-Kasaï / Complex megacryst suite of the Mbuji-Mayi kimberlites in Democratic Republic of Congo: evidence for metasomatism in the archean subcontinental lithospheric mantle of the Congo-Kasai craton

Pivin, Marjorie 24 May 2012 (has links)
L’origine des suites de mégacristaux des kimberlites est sujette à d’intenses débats depuis de nombreuses années. La suite complexe de mégacristaux (grenat, clinopyroxène, zircon, baddeleyite, ilménite, rutile et nodules d’intercroissances rutile-silicates) des kimberlites diamantifères de Mbuji-Mayi (Kasaï Oriental), mises en place au Crétacé dans le craton archéen du Congo-Kasaï, a été étudiée en détails dans le but d’établir les relations entre les différents minéraux de la suite, leur relation au magma kimberlitique-hôte et au manteau lithosphérique cratonique archéen. L’étude des mégacristaux de grenat des kimberlites pauvres en diamants du Kundelungu (Katanga) a permis en outre d’établir la comparaison entre les mégacristaux de deux provinces kimberlitiques en République Démocratique du Congo, qui diffèrent notamment par leur âge de mise en place et par la composition et l’âge du socle traversé. <p>L’ensemble des données minéralogiques et géochimiques acquises (éléments majeurs et en traces, géochimie isotopique de l’oxygène, du Nd et de l’Hf) est intégré dans le but de déterminer la nature du (ou des) processus qui a (ont) donné naissance à ces suites de mégacristaux. <p>En parallèle, l’origine d’un xénolite rare de clinopyroxénite à kyanite exceptionnellement riche en Cr des kimberlites de Mbuji-Mayi a été explorée.<p>Bien qu’ils partagent de nombreuses caractéristiques avec d’autres suites de mégacristaux kimberlitiques, les mégacristaux de RDC sont généralement enrichis en Cr et appauvris en Fe et Ti, et ne présentent pas de preuve d’une origine par cristallisation fractionnée à partir d’un magma, ce qui permet de suggérer une origine différente, en l’occurrence une liaison plus directe avec le manteau lithosphérique réfractaire local lors de leur formation. Une origine métasomatique par interaction entre un liquide/fluide précurseur de la kimberlite et les péridotites du manteau lithosphérique est donc favorisée. L’ensemble des espèces minérales qui forme la suite de mégacristaux peut en effet trouver un équivalent compositionnel dans les lithologies métasomatisées de la lithosphère mantélique. <p>Les mégacristaux de grenat des deux provinces partagent des similarités frappantes qui sont interprétées en termes de processus de formation similaires. En revanche, ils ont systématiquement montré un comportement géochimique singulier, suggérant un processus de formation différent des autres mégacristaux. Ils semblent en effet avoir retenu l’héritage des compositions variables d’anciens protolites de grenat affectés récemment par un métasomatisme de type kimberlitique. Ces grenats résultent de la recristallisation de grenats initialement présents dans les péridotites cratoniques de la lithosphère archéenne. Par contre, les mégacristaux de clinopyroxène, zircon, baddeleyite, ilménite, rutile et les nodules d’intercroissances rutile-silicates se sont effectivement formés récemment par l’interaction métasomatique entre le liquide/fluide proto-kimberlitique et les péridotites cratoniques. Des variations locales du rapport (fluide et/ou liquide)/roche et de l’activité en SiO2 lors de la percolation du magma proto-kimberlitique asthénosphérique dans le manteau lithosphérique cratonique, couplées à la nature propre à la kimberlite de la région, permettent d’intégrer l’ensemble des mégacristaux dans un modèle pétrogénétique commun, avec des processus de formation parfois contrastés. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0794 seconds