• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 20
  • 17
  • 10
  • 8
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 141
  • 141
  • 77
  • 38
  • 26
  • 25
  • 23
  • 22
  • 22
  • 22
  • 21
  • 18
  • 18
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Calcium in Inflammation: Relevance to Alzheimer's Disease

Quadros, Amita 18 October 2007 (has links)
Alzheimer’s disease (AD) is neuropathologically characterized by excessive beta -amyloid (Abeta)plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Although the etiology of genetic cases of AD has been attributed to mutations in presenilin and amyloid precursor protein (APP) genes, in most sporadic cases of AD, the etiology is still unknown and various predisposing factors could contribute to the pathology of AD. Predominant among these possible predisposing factors that have been implicated in AD are age, hypertension, traumatic brain injury, diabetes, chronic neuroinflammation, alteration in calcium levels and oxidative stress. Since both inflammation and altered calcium levels are implicated in the pathogenesis of AD, we wanted to study the effect of altered levels of calcium on inflammation and the subsequent effect of selective calcium channel blockers on the production of pro-inflammatory cytokines and chemokines. Our hypothesis is that Abeta depending on it conformation, may contribute to altered levels of intracellular calcium in neurons and glial cells. We wanted to determine which conformation of Abeta was most pathogenic in terms of increasing inflammation and calcium influx and further elucidate the possibility of a link between altered calcium levels and inflammation. In addition, we wanted to test whether calcium channel blockers could inhibit the inflammation mediated by the most pathogenic form of Abeta by antagonizing the calcium influx triggered by Abeta. Our results in human glial and neuronal cells demonstrate that the high molecular weight oligomers are the most potent at stimulating the release of pro-inflammatory cytokines IL-6 and IL-8 as well as increasing intracellular levels of calcium compared to other conformations of Abeta. Further, L-type calcium channel blockers and calmodulin kinase inhibitors are able to significantly reduce the levels of IL-6 and IL-8. These results suggest that Abeta induced alteration of intracellular calcium levels contributes to its pro-inflammatory effect.
2

Investigation of nitric oxide-dependent and independent cytokine-mediated effects in pancreatic islets of Langerhans

John, Nerys Elizabeth January 1999 (has links)
No description available.
3

An investigation of protein tyrosine phosphorylation in equine blood platelets

Dillon, Anne M. R. January 1995 (has links)
No description available.
4

Anti-cancer peptides containing modified tyrosine residues

Cooper, Margaret S. January 1995 (has links)
No description available.
5

Characterisation of two Plasmodium falciparum cell cycle related kinases and the effect of kinase inhibitors on the parasite

Harmse, Leonie Johanna 06 August 2008 (has links)
Abstract would not load on to DSpace.
6

Factors which impact on the response of CML patients to ABL kinase inhibitor therapy: a study of imatinib and nilotinib.

Harland, Deborah Lee January 2008 (has links)
The natural history of CML has been transformed in recent years by the introduction of Glivec[superscript TM] (imatinib mesylate), an ABL kinase inhibitor, which provides the new treatment paradigm for chronic phase CML. While the majority of patients with CP-CML respond very well to imatinib, there are approximately 15% of patients who fail to respond, or respond suboptimally. While the major cause of secondary imatinib resistance can be attributable to kinase domain mutations, the underlying cause of primary resistance is yet to be elucidated. Utilizing the phosphorylation of the adaptor protein Crkl, an immediate downstream partner of BCRABL, as a surrogate measure of BCR-ABL kinase activity, a large interpatient variation in the degree of imatinib induced kinase inhibition achieved in-vitro, was observed in previously untreated CP-CML patients. The observed in-vitro sensitivity was a good predictor of molecular response in patients treated with 600mg imatinib as front line therapy. Furthermore, analysis of the in-vivo reduction in p-Crkl mediated measured in blood cells in response to imatinib over the first 28 days of therapy, revealed that patients with higher % reductions respond significantly better over a two year period, than those with lower % reductions. Using 14-C labelled imatinib, it was demonstrated that this intrinsic sensitivity correlated to the amount of drug which was retained within the target haemopoietic cell, and furthermore, that a critical determinant of the active influx of imatinib, was the functional activity of the human organic cation transporter -1 (OCT-1), as determined by a prazosin (potent inhibitor of OCT-1) inhibition assay. Patients with high OCT-1 Activity had superior molecular responses when compared to those with low OCT-1 Activity, but in those patients who could tolerate increased imatinib dose, these inferior responses could be largely overcome. In contrast, Nilotinib, a more potent second generation tyrosine kinase inhibitor, is not dependent on OCT-1 for influx, making it a possible treatment choice for patients with low OCT-1 Activity. Both imatinib and nilotinib interact with the efflux transporters ABCB1, and ABCG2. In combination studies imatinib results in a significantly increased intracellular concentration of nilotinib, most likely through interaction with these efflux transporters. Furthermore, commonly used therapies such as proton pump inhibitors also interact with ABCB1 and ABCG2, and demonstrable changes in intracellular drug concentrations were observed in-vitro with concomitant administration of these agents and imatinib or nilotinib at clinically relevant concentrations. In conclusion, these data demonstrate that the degree of kinase inhibition mediated in-vitro and in-vivo by imatinib, is a critical determinant of subsequent molecular response. This intrinsic sensitivity to imatinib induced kinase inhibition is related to the activity of the OCT-1 protein. This protein is not involved in the transport of nilotinib, suggesting it as a possible treatment alternative in those patients with low OCT-1 Activity. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1319077 / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2008
7

Preclinical studies of roscovitine /

Vita, Marina, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
8

Lariat peptide inhibitors of Abl kinase

2011 September 1900 (has links)
A majority of kinase inhibitors predominantly occupy the highly conserved adenine-binding pocket located in the kinase catalytic cleft, and therefore the target selectivity of these molecules is a major concern. In order to design highly specific next-generation drugs, it is essential to exploit the less-conserved binding pockets, which lie adjacent to the adenine-binding pocket. Small peptides that can function as adenosine triphosphate (ATP) competitive inhibitors would prove useful in identifying and validating new druggable surfaces in the kinase catalytic cleft. These peptides, being larger than small molecules, have the potential to target the ATP binding pocket as well as surfaces that lie adjacent to this pocket. Such peptides recognizing novel binding pockets can assist the drug discovery process in several ways. In this thesis, we describe the isolation and characterization of a novel class of cyclic peptides, referred to as lariats, against Abl kinase, a drug target important in chronic myeloid leukemia and other disorders. Using a yeast two-hybrid approach, we first isolated two related lariats, named A1 and A2, from a pool of five million lariats, which interact with the catalytic domain of Abl kinase. In vitro studies indicated that the synthetic A1 lariat competitively inhibits ATP binding by targeting the catalytic cleft that lies between the N- and C- lobes of the kinase catalytic domain. To obtain tighter-binding variants of the A1 lariat, we developed an affinity maturation protocol consisting of two steps. In the first step, we defined acceptable and tolerable substitutions at each position of the A1 lariat using site-saturation mutagenesis (SSM). In the second step, we designed specific mutations to the A1 lariat based on the SSM results and evolved higher affinity variants. Synthetic and recombinant higher affinity lariats exhibited a strong inhibition of Abl kinase activity in vitro and Bcr-Abl kinase activity in vivo, respectively, illustrating the potential of lariats as chemical genetic tools. Resistance mutation profiling showed that the lariats are not affected by the activating mutations located in the activation loop of kinase, and instead bind preferentially to the kinase active conformation. Selectivity analysis indicated that the lariats do not recognize Src family kinases, which share a high structural similarity with Abl kinase in their active conformation. These findings, coupled with preliminary results from modeling studies, strongly suggest that the lariats have identified novel allosteric drug-binding pockets in the kinase catalytic cleft.
9

Tumour cell responses to novel fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors

Knights, Victoria E. E. January 2010 (has links)
No description available.
10

Protein kinase inhibitor effects on P-glycoprotein (P-gp) activity and expression in various cell lines

Pogorzelec, Michael P.J. 13 January 2015 (has links)
Little is known about potential influences of kinase pathway modulation on expression and activity of P-glycoprotein (P-gp). A protein kinase inhibitor (PKI) library was screened, to determine its effects on activity and expression of P-gp, in various cell lines. Cell lines were incubated with PKI for 24 h. Subsequent P-gp substrate accumulation studies were performed. Changes in P-gp activity and/or expression ≥ 25% compared to control were considered hits. Kinase pathways identified as P-gp activity hits were examined for their ability to modulate permeability. PKI families GSK-3, Craf1 and VEGFR2 and Tie-2, significantly modulated P-gp activity in the MDCK cell line. PKI families GSK-3, Iκκ and Jnk2/3 significantly modulated P-gp activity in the Caco-2 cell line. Few P-gp activity hits significantly modulated P-gp expression. PKIs modulate P-gp activity more than P-gp expression in a cell line dependent manner, excluding GSK-3 PKI family, which appears to be cell line independent.

Page generated in 0.0601 seconds