• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of the Performance of Bridge Steel Pedestals under Low Seismic Loads

Hite, Monique C. 09 April 2007 (has links)
Many bridges are damaged by collisions from over-height vehicles resulting in significant impact to the transportation network. To reduce the likelihood of impact from over-height vehicles, steel pedestals have been used as a cost-effective, efficient means to increase bridge clearance heights. However, these steel pedestals installed on more than 50 bridges in Georgia have been designed with no consideration of seismic loads and may behave in a similar fashion to high-type steel bearings. Past earthquakes have revealed the susceptibility of high-type bearings to damage, resulting in the collapse of several bridges. Although Georgia is located in a low-to-moderate region of seismicity, earthquake design loads for steel pedestals should not be ignored. In this study, the potential vulnerabilities of steel pedestals having limited strength and deformation capacity and lack of adequate connection details for anchor bolts is assessed experimentally and analytically. Full-scale reversed cyclic quasi-static experimental tests are conducted on a 40' bridge specimen rehabilitated with 19" and 33" steel pedestals to determine the modes of deformation and mechanisms that can lead to modes of failure. The inelastic force-deformation hysteretic behavior of the steel pedestals obtained from experimental test results is used to calibrate an analytical bridge model developed in OpenSees. The analytical bridge model is idealized based on a multi-span continuous bridge in Georgia that has been rehabilitated with steel pedestals. The analytical bridge model is subjected to a suite of ground motions to evaluate the performance of the steel pedestals and the overall bridge system. Recommendations are made to the Georgia Department of Transportation (GDOT) for the design and construction of steel pedestals. The results of this research are useful for Georgia and other states in low-to-moderate seismic zones considering the use of steel pedestals to elevate bridges and therefore reduce the likelihood of over-height vehicle collisions.

Page generated in 0.1169 seconds