• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized Solutions to Several Problems in Open Channel Hydraulics / 開水路水理学におけるいくつかの問題に対する一般化解

MEAN, Sovanna 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23527号 / 農博第2474号 / 新制||農||1087(附属図書館) / 学位論文||R3||N5358(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 中村 公人, 准教授 宇波 耕一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
2

Two Dimensional Finite Volume Model for Simulating Unsteady Turbulent Flow and Sediment Transport

Yu, Chunshui January 2013 (has links)
The two-dimensional depth-averaged shallow water equations have attracted considerable attentions as a practical way to solve flows with free surface. Compared to three-dimensional Navier-Stokes equations, the shallow water equations give essentially the same results at much lower cost. Solving the shallow water equations by the Godunov-type finite volume method is a newly emerging area. The Godunov-type finite volume method is good at capturing the discontinuous fronts in numerical solutions. This makes the method suitable for solving the system of shallow water equations. In this dissertation, both the shallow water equations and the Godunov-type finite volume method are described in detail. A new surface flow routing method is proposed in the dissertation. The method does not limit the shallow water equations to open channels but extends the shallow water equations to the whole domain. Results show that the new routing method is a promising method for prediction of watershed runoff. The method is also applied to turbulence modeling of free surface flow. The κ - ε turbulence model is incorporated into the system of shallow water equations. The outcomes prove that the turbulence modeling is necessary for calculation of free surface flow. At last part of the dissertation, a total load sediment transport model is described and the model is tested against 1D and 2D laboratory experiments. In summary, the proposed numerical method shows good potential in solving free surface flow problems. And future development will be focusing on river meandering simulation, non-equilibrium sediment transport and surface flow - subsurface flow interaction.

Page generated in 0.1068 seconds