• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • Tagged with
  • 24
  • 24
  • 12
  • 10
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Determinants And Strategies For The Alternate Foot Placement

Moraes, Renato January 2005 (has links)
Undesirable landing area (e. g. , a hole, a fragment of glass, a water puddle, etc) creates the necessity for an alternate foot placement planning and execution. Previous study has proposed that three determinants are used by the central nervous system (CNS) for planning an alternate foot placement: minimum foot displacement, stability and maintenance of forward progression. However, validation of these determinants is lacking. Therefore, the general purpose of the series of studies presented here is to validate and test the generality of the decision algorithm of alternate foot placement selection developed previously. The first study was designed to validate the use of a virtual planar obstacle paradigm and the economy assumption behind minimum foot displacement determinant. Participants performed two blocks of trials. In one block, they were instructed to avoid stepping in a virtual planar obstacle projected in the screen of a LCD monitor embedded in the ground. In another block, they were instructed to avoid stepping in a real hole present in walkway. Behavioral response was unaffected by the presence of a real hole. In addition, it was suggested that minimum foot displacement results in minimum changes in EMG activity which validates the economy determinant. The second study was proposed to validate the stability determinant. Participants performed an avoidance task under two conditions: free and forced. In the free condition participants freely chose where to land in order to avoid stepping in a virtual obstacle. In the forced condition, a green arrow was projected over the obstacle indicating the direction of the alternate foot placement. The data from the free condition was used to determine the preferred alternate foot placement whereas the data from the forced condition was used to assess whole body stability. It was found that long and lateral foot placements are preferred because they result in a more stable behavior. The third study was designed to validate the alternate foot placement model in a more complex terrain. Participants were required to avoid stepping in two virtual planar obstacles placed in sequence. It was found that participants used the strategy of planning the avoidance movement globally and additional determinants were used. One of the additional determinants was implementation feasibility. In the third study, gaze behavior was also monitored and two behaviors emerged from this data. One sub-group of participants fixated on the area stepped during adaptive step, whereas another sub-group anchor their gaze in a spot ahead of the area-to-be avoided and used peripheral vision for controlling foot landing. In summary, this thesis validates the three determinants for the alternate foot placement planning model and extends the previous model to more complex terrains.
22

Stabilization Strategies of the Lumbar Spine in Vivo

Grenier, Sylvain January 2002 (has links)
In developing a method of quantifying stability in the lumbar spine Cholewicki and McGill (1996) have also broached the notion of sufficient stability, where too much stiffness (and stability) would hinder motion. Thus people highly skilled at maintaining stability may use different and optimal strategies, where <i>sufficient</i> stability is maintained. The purpose of this work was to explore the contributors to <i>sufficient</i> stability, how they coordinate and relate to injury mechanisms. This work represents a cascade of investigations where. 1) To explore the balance of various sources of stiffness and their effect on the critical load and post-buckling behaviour, simulations were undertaken where the buckled configuration of the spine was predicted and its stability in this new configuration was assessed. 2) The various sources of stiffness contributing to stability in the lumbar spine have been in some cases found to be deficient. The question of how these deficiencies place individuals at risk of instability, if at all, remains unresolved. A challenged breathing task was used to determine if there was a difference in stabilizing potential between healthy individuals and low back pain sufferers. Given that differences in stabilizing potential are apparent, several tasks which included a predetermined motor strategy, such as 3)pressurizing the abdomen and 4) abdominal hollowing vs. muscle bracing, were evaluated to determine if individuals can utilize motor strategies to augment stability. The stabilizing potential of abdominal pressure (IAP) and its interaction with muscle activation was evaluated. Some individuals are more skilled at stabilizing their lumbar spine than others. Some consciously controlled motor strategies are better stabilizers than others. These strategies highlight the relative contributions of various components (posture, passive tissue, muscle activation, and load) in that no single muscle dominates stability and IAP appears to augment stability beyond muscle activation alone. The margin of safety is considerable and depends on the task at hand, but it is possible to speculate on which tissues are at greatest risk of injury.
23

The Effects of 60 Days of Head Down Bed Rest on Vascular Health

Mattar, Louis January 2006 (has links)
This study was designed to test the hypothesis that 60 days continuous head down bed rest (HDBR), an Earth-based analogue of the effects of space flight, would elevate factors that increase vasoconstriction and would increase markers of vascular inflammation. The study incorporated countermeasures consisting of treadmill running within lower-body negative pressure and resistive "flywheel" exercise (exercise countermeasure, EX) or an increased protein intake of 0. 6 g/kg body weight/day (dietary countermeasures, DIET) to determine whether these interventions might prevent the vasoconstrictor and inflammatory responses when compared to a control (CON) group. Markers of vascular health measured in the study include the vasoactive molecules angiotensin II (Ang II), endothelin-1 (ET-1), and nitric oxide metabolites (NO<sub>met</sub>); and markers of inflammation including C-reactive protein (CRP), and the adhesion molecules E-selectin (E-sel), intracellular adhesion molecule-1 (ICAM), and vascular cell adhesion molecule-1 (VCAM). Twenty four women were housed at the MEDES clinic in Toulouse, France, as part of a large international study (Women International Space Simulation for Exploration, WISE) in which various experimental protocols and countermeasures were integrated into a single experimental design completed during two campaigns. Each 100 day campaign included 20 days of pre-testing (pre-HDBR), 60 days of bed rest (HDBR), and 20 days of post-testing (post-HDBR). The experimental countermeasures were applied only during the 60-day HDBR period. Following 60 days of HDBR, many changes occurred in the concentrations of the measured molecules. Specifically, the concentration of Ang II significantly increased in the CON and DIET groups (52. 9%, p = 0. 014; and 124. 4%, p <0. 0001 respectively), but not in the EX group. Also, NO<sub>met</sub> decreased in all groups, with reductions in the EX and DIET groups (p = 0. 013, and p = 0. 056 respectively). Markers used to assess vascular inflammation increased following the HDBR. The increase in CRP in the CON and DIET groups and the decrease in the EX group from pre- to post-HDBR were not significant; however, the directional changes resulted in an interaction between group and HDBR (p = 0. 052). The adhesion molecule E-sel was significantly increased in the DIET group (p = 0. 003), and VCAM was significantly increased in the CON group (p = 0. 016) with a smaller increase in the DIET group (p = 0. 08). No changes in adhesion molecules were observed in the EX group. This study demonstrated that 60 days of HDBR by young, healthy, women caused changes in several different molecules that are beginning to emerge as risk factors for the development of cardiovascular diseases. Further, it was observed that regular, vigorous exercise during HDBR prevented these changes. These results suggest that future studies of this kind should directly monitor the effects of simulated space flight on vascular health in men and women to obtain a greater understanding of the adaptations that might occur during long term space exploration missions. HDBR can be considered an extreme model of physical inactivity and could be used to provide insight into mechanisms of disease processes associated with the sedentary lifestyle that is prevalent in Western society.
24

VISUAL INPUTS AND MOTOR OUTPUTS AS INDIVIDUALS WALK THROUGH DYNAMICALLY CHANGING ENVIRONMENTS

Cinelli, Michael January 2006 (has links)
Walking around in dynamically changing environments require the integration of three of our sensory systems: visual, vestibular, and kinesethic. Vision is the only modality of these three sensory systems that provides information at a distance for proactively controlling locomotion (Gibson, 1958). The visual system provides information about self-motion, about body position and body segments relative to one another and the environment, and environmental information at a distance (Patla, 1998). Gibson (1979) developed the idea that everyday behaviour is controlled by perception-action coupling between an action and some specific information picked up from the optic flow that is generated by that action. Such that visual perception guides the action required to navigate safely through an environment and the action in turn alters perception. The objective of my thesis was to determine how well perception and action are coupled when approaching and walking through moving doors with dynamically changing apertures. My first two studies were grouped together and here I found that as the level of threat increased, the parameters of control changed and not the controlling mechanism. The two dominant action control parameters observed were a change in approach velocity and a change in posture (i. e. shoulder rotation). These findings add to previous work done in this area using a similar set-up in virtual reality, where after much practice participants increased success rate by decreasing velocity prior to crossing the doors. In my third study I found that visual fixation patterns and action parameters were similar when the location of the aperture was predictable and when it was not. Previous work from other researchers has shown that vision and a subsequent action are tightly coupled with a latency of about 1second. I have found that vision only tightly couples action when a specific action is required and the threat of a collision increases. My findings also point in the same direction as previous work that has shown that individuals look where they are going. My last study was designed to determine if we go where we are looking. Here I found that action does follow vision but is only loosely correlated. The most important and common finding from all the studies is that at 2 seconds prior to crossing the moving doors (any type of movement) vision seems to have the most profound effect on action. At this time variability in action is significantly lower than at prior times. I believe that my findings will help to understand how individuals use vision to modify actions in order to avoid colliding with other people or other moving objects within the environment. And this knowledge will help elderly individuals to be better able to cope with walking in cluttered environments and avoid contacting other objects.

Page generated in 0.0903 seconds