• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GUAP3 SCALE DISSOLVER AND SCALE SQUEEZE APPLICATION USING KINETIC HYDRATE INHIBITOR (KHI)

Clark, Len. W., Anderson, Joanne, Barr, Neil, Kremer, Egbert 07 1900 (has links)
The use of Kinetic Hydrate Inhibitors (KHI) is one of the optimum methods employed to control gas hydrate formation issues and provide flow assurance in oil and gas production systems. The application of this technology has several advantages to operators, including significant cost savings and extended life of oil and gas systems. This paper will highlight a specific case where a Major operator in the North Sea (UK sector) significantly reduced the cost of well intervention operations by applying a KHI in a subsea gas lift line. Considerable cost savings were realized by reducing volume of chemical required and this enabled the application to be performed from the FPSO eliminating the need for a dedicated Diving Support Vessel (DSV). Furthermore, the application of KHI also reduced manual handling and chemical logistics usually associated with this particular treatment. In order to prevent mineral scale deposition occurring in downhole tubing and near well bore and in the formation; scale inhibitor squeeze applications are standard practice. For subsea wells the fluids can be pumped down in to the well via gas lift lines. However, upon completion of previous scale squeeze operations at this particular location, hydrate formation was observed when a mixture of MEG and water was used following interventions via the gas lift line. By applying 1% KHI with a mixture of MEG and Water, the well was brought back into production following scale squeeze operations without hydrate formation occurring.
2

GUAP3 SCALE DISSOLVER AND SCALE SQUEEZE APPLICATION USING KINETIC HYDRATE INHIBITOR (KHI)

Clark, Len. W., Anderson, Joanne, Barr, Neil, Kremer, Egbert 07 1900 (has links)
The use of Kinetic Hydrate Inhibitors (KHI) is one of the optimum methods employed to control gas hydrate formation issues and provide flow assurance in oil and gas production systems. The application of this technology has several advantages to operators, including significant cost savings and extended life of oil and gas systems. This paper will highlight a specific case where a Major operator in the North Sea (UK sector) significantly reduced the cost of well intervention operations by applying a KHI in a subsea gas lift line. Considerable cost savings were realized by reducing volume of chemical required and this enabled the application to be performed from the FPSO eliminating the need for a dedicated Diving Support Vessel (DSV). Furthermore, the application of KHI also reduced manual handling and chemical logistics usually associated with this particular treatment. In order to prevent mineral scale deposition occurring in downhole tubing and near well bore and in the formation; scale inhibitor squeeze applications are standard practice. For subsea wells the fluids can be pumped down in to the well via gas lift lines. However, upon completion of previous scale squeeze operations at this particular location, hydrate formation was observed when a mixture of MEG and water was used following interventions via the gas lift line. By applying 1% KHI with a mixture of MEG and Water, the well was brought back into production following scale squeeze operations without hydrate formation occurring.
3

QUALIFICATION OF LOW DOSE HYDRATE INHIBITORS (LDHIS): FIELD CASES STUDIES DEMONSTRATE THE GOOD REPRODUCIBILITY OF THE RESULTS OBTAINED FROM FLOW LOOPS

Peytavy, Jean-Louis, Glénat, Philippe, Bourg, Patrick 07 1900 (has links)
Replacement of the traditional thermodynamic hydrate inhibitors (methanol and glycols) in multiphase applications is highly desirable for Health, Safety & Environment (HSE) considerations and for investment costs savings. Low Dose Hydrate Inhibitors (LDHI) are good candidates to achieve this objective and their interest is growing in the E&P industry. There are two types of LDHI: the Kinetic Hydrate Inhibitors (KHI) and the Anti-Agglomerants (AA) also called dispersant additives. The main challenge with LDHIs is that they require the unprocessed effluents to be produced inside the hydrate stability zone. It is then of the utmost importance to select, qualify and implement properly LDHIs, so that their field deployment is performed with success. But due to the very stochastic nature of the nucleation step, the hydrate crystallisation process leads to very large discrepancies between performances results carried out at lab or pilot scales. In order to overcome this difficulty, we have developed an in-house special protocol which is implemented prior to each qualification tests series. This in-house 15 years old protocol consists in conducting each tests series with a fluids system having previously formed hydrates in a first step but followed by a dissociation step at moderate temperature for a few hours. This paper presents results selected from several field cases studies and obtained from our 80 bara and 165 bara flow loops. They show the very good reproducibility obtained with and without LDHIs. In the case of KHI, where the stochastic nature of the nucleation step is very critical, the results show that the deviation on the “hold time” for a given subcooling is less than 15%. (Revised version of ICGH paper 5499_1)

Page generated in 0.0752 seconds