• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1524
  • 532
  • 216
  • 216
  • 34
  • 26
  • 22
  • 17
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 3478
  • 830
  • 435
  • 406
  • 332
  • 272
  • 266
  • 255
  • 160
  • 154
  • 151
  • 141
  • 135
  • 134
  • 130
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Hydrogen reduction route towards the production of nano-grained alloys.- Synthesis and characterization of Fe2Mo powder.

Morales Estrella, Ricardo January 2002 (has links)
With a view to design processes based on gas-solid reactiontowards the production of fine-grained novel alloys andintermetallics, studies of the reduction of the mixed oxides ofFe and Mo by hydrogen towards the production of Fe-Mo alloyshave been carried out in the present work. The route offersexcellent potentials toward the bulk production of nano-grainedmaterial of tailored-composition in bulk in a green processpath. As a case study, the reduction of the mixed oxides ofiron and molybdenum were carried out from the viewpoint ofmaterials processing, chemical reaction kinetics, as well asmechanical and structural properties. The reduction kinetics ofthin layer of fine oxide particles of Fe2MoO4 was studied usingthermogravimetric technique. This technique allowed determiningreduction parameters such as temperature of reduction as wellas the activation energies for the chemical reaction as therate-controlling step. The end products were analyzed by X-raydiffraction. The reduction product was found to be reduced topure, homogeneous Fe2Mo. In order to examine the upscaling ofthe process, production of the alloy in larger amounts wascarried out in a laboratory-scale fluidized reactor and theprocess parameters were optimized. It was found that, under theconditions of the experiments, the chemical reaction was therate-controlling step. TEM, SEM and X-ray analyses of thereaction product showed the presence of a monolithicintermetallic with micro- and nanocrystalline structure. Themechanical properties of this alloy were determined.Compositions of microcrystalline Fe-Mo alloys were varied byreducing mixtures of Fe2MoO4 with MoO2 or FeO with differentFe/Mo ratios. The products after the reduction consisted of twophases, viz. intermetallic FexMoy compound and metallic Fe orMo. XRD analyses revealed that the former had microcrystallinestructure while the latter were in crystalline form. This workshows that gas-solid reaction method, together with powdermetallurgy technique is a promising process route towards theproduction of novel metallic alloys such as Fe2Mo intermetallicwith micro- and nanocrystalline grains. <b>Key words</b>: nanoalloys, intermetallics, iron-molybdenumalloy, hydrogen reduction, thermogravimetry, fluidized bed,mechanical properties, structure
292

A Comparison of Preoperative and Postoperative Lower-extremity Joint Biomechanics of Patients with Cam Femoroacetabular Impingement

Brisson, Nicholas 28 September 2011 (has links)
Surgery to correct cam femoroacetabular impingement (FAI) is increasingly popular. Despite this, no known study has used motion analysis and ground reaction forces to quantify the outcome of surgery for FAI. The goal of this study was to compare the preoperative and postoperative lower-extremity joint kinematic and kinetic measurements of cam FAI patients during activities of daily living with use of a high-speed motion capture system and force platforms. We hypothesized that the lower-extremity joint mechanics of FAI patients during level walking and maximal squatting would resemble more those of healthy control subjects, after surgery. Ten patients with unilateral symptomatic cam FAI, who underwent corrective surgery using an open or combined technique, performed walking and maximal depth squatting trials preoperatively and postoperatively. Thirteen healthy control subjects, matched for age, sex and body mass index, provided normative data. Results showed that postoperatively, FAI patients had reduced hip ROM in the frontal and sagittal planes, produced smaller peak hip abduction and external rotation moments, and generated less peak hip power compared to the control group during level walking. During maximal squatting, postoperative FAI patients squatted to a greater depth, and had larger knee flexion and ankle dorsiflexion angles, as well as the sum of all joint angles of the affected limb at maximal depth compared to the preoperative values. The lower-extremity joint and pelvic mechanics of FAI patients did not fully return to normal after surgery. Although surgery seemed to reduce hip pain and restore a normal femoral head-neck offset, it further impaired muscle function as a result of muscle incisions. More research is needed to determine the effects of muscle incisions, which could help improve surgical techniques and develop better rehabilitation programs for FAI patients.
293

Kinetics and transport phenomena in the chemical decomposition of copper oxychloride in the thermochemical Cu-CI Cycle

Marin, Gabriel D. 01 April 2012 (has links)
The thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production includes three chemical reactions of hydrolysis, decomposition and electrolysis. The decomposition of copper oxychloride establishes the high-temperature limit of the cycle. Between 430 and 530 oC, copper oxychloride (Cu2OCl2) decomposes to produce a molten salt of copper (I) chloride (CuCl) and oxygen gas. The conditions that yield equilibrium at high conversion rates are not well understood. Also, the impact of feed streams containing by-products of incomplete reactions in an integrated thermochemical cycle of hydrogen production are also not well understood. In an integrated cycle, the hydrolysis reaction where CuCl2 reacts with steam to produce solid copper oxychloride precedes the decomposition reaction. Undesirable chlorine may be released as a result of CuCl2 decomposition and mass imbalance of the overall cycle and additional energy requirements to separate chlorine gas from the oxygen gas stream. In this thesis, a new phase change predictive model is developed and compared to the reaction rate kinetics in order to better understand the nature of resistances. A Stefan boundary condition is used in a new particle model to track the position of the moving solid-liquid interface as the solid particle decomposes under the influence of heat transfer at the surface. Results of conversion of CuO*CuCl2 from both a thermogravimetric (TGA) microbalance and a laboratory scale batch reactor experiments are analyzed and the rate of endothermic reaction determined. A second particle model identifies parameters that impact the transient chemical decomposition of solid particles embedded in the bulk fluid consisting of molten and gaseous phases at high temperature and low Reynolds number. The mass, energy, momentum and chemical reaction equations are solved for a particle suddenly immersed in a viscous continuum. Numerical solutions are developed and the results are validated with experimental data of small samples of chemical decomposition of copper oxychloride (CuO*CuCl2). This thesis provides new experimental and theoretical reference for the scale-up of a CuO*CuCl2 decomposition reactor with consideration of the impact on the yield of the thermochemical copper-chlorine cycle for the generation of hydrogen. / UOIT
294

The Kinetics of Epoxidation of A,B-Unsaturated Esters by Dimethyldioxirane: A Mechanistic Study

Sansone, John P. 01 December 2009 (has links)
The epoxidation of a series of α,β-unsaturated esters by dimethyldioxirane was studied. Second order rate constants were determined under pseudo first order conditions. The epoxide of each ester upon full conversion was found to be the only isolable product. Second order rate constants for the cis-like ethyl tiglate showed a 4 fold increase over that of trans-like angelic methyl ester. The ester substituent was found to have little effect on overall rate constants. A comparison of a relatively strained cyclopentene carboxylate to the cyclohexene carboxylate showed a 2 fold increase in selectivity for the former. Ethyl methacrylate displayed unexpected reactivity toward dioxirane; undergoing reaction faster than more substituted electron rich alkenes. Computer modeling studies using the AM-1 and density functional approaches were carried out to gain insights into the mechanistic aspects of the reaction. The esters in general favored the S-cis conformation or were evenly distributed among S-cis and S-trans except for the ethyl methacrylate case. The AM-1 approach did not predict the reactivity of open chain esters. The density functional approach predicted the relative reactivity of seven of the nine esters but could not predict the reactivity when the R1 group was substituted. One possible explanation is that the computer model predicts the methyl groups of the dioxirane to be positioned over the R1 group in the lowest energy of all other esters, but steric clash prevents this for angelic methyl ester and ethyl 3,3 dimethyl acrylate.
295

A Comparison of Preoperative and Postoperative Lower-extremity Joint Biomechanics of Patients with Cam Femoroacetabular Impingement

Brisson, Nicholas 28 September 2011 (has links)
Surgery to correct cam femoroacetabular impingement (FAI) is increasingly popular. Despite this, no known study has used motion analysis and ground reaction forces to quantify the outcome of surgery for FAI. The goal of this study was to compare the preoperative and postoperative lower-extremity joint kinematic and kinetic measurements of cam FAI patients during activities of daily living with use of a high-speed motion capture system and force platforms. We hypothesized that the lower-extremity joint mechanics of FAI patients during level walking and maximal squatting would resemble more those of healthy control subjects, after surgery. Ten patients with unilateral symptomatic cam FAI, who underwent corrective surgery using an open or combined technique, performed walking and maximal depth squatting trials preoperatively and postoperatively. Thirteen healthy control subjects, matched for age, sex and body mass index, provided normative data. Results showed that postoperatively, FAI patients had reduced hip ROM in the frontal and sagittal planes, produced smaller peak hip abduction and external rotation moments, and generated less peak hip power compared to the control group during level walking. During maximal squatting, postoperative FAI patients squatted to a greater depth, and had larger knee flexion and ankle dorsiflexion angles, as well as the sum of all joint angles of the affected limb at maximal depth compared to the preoperative values. The lower-extremity joint and pelvic mechanics of FAI patients did not fully return to normal after surgery. Although surgery seemed to reduce hip pain and restore a normal femoral head-neck offset, it further impaired muscle function as a result of muscle incisions. More research is needed to determine the effects of muscle incisions, which could help improve surgical techniques and develop better rehabilitation programs for FAI patients.
296

Hydrogen reduction route towards the production of nano-grained alloys.- Synthesis and characterization of Fe2Mo powder.

Morales Estrella, Ricardo January 2002 (has links)
<p>With a view to design processes based on gas-solid reactiontowards the production of fine-grained novel alloys andintermetallics, studies of the reduction of the mixed oxides ofFe and Mo by hydrogen towards the production of Fe-Mo alloyshave been carried out in the present work. The route offersexcellent potentials toward the bulk production of nano-grainedmaterial of tailored-composition in bulk in a green processpath. As a case study, the reduction of the mixed oxides ofiron and molybdenum were carried out from the viewpoint ofmaterials processing, chemical reaction kinetics, as well asmechanical and structural properties. The reduction kinetics ofthin layer of fine oxide particles of Fe2MoO4 was studied usingthermogravimetric technique. This technique allowed determiningreduction parameters such as temperature of reduction as wellas the activation energies for the chemical reaction as therate-controlling step. The end products were analyzed by X-raydiffraction. The reduction product was found to be reduced topure, homogeneous Fe2Mo. In order to examine the upscaling ofthe process, production of the alloy in larger amounts wascarried out in a laboratory-scale fluidized reactor and theprocess parameters were optimized. It was found that, under theconditions of the experiments, the chemical reaction was therate-controlling step. TEM, SEM and X-ray analyses of thereaction product showed the presence of a monolithicintermetallic with micro- and nanocrystalline structure. Themechanical properties of this alloy were determined.Compositions of microcrystalline Fe-Mo alloys were varied byreducing mixtures of Fe2MoO4 with MoO2 or FeO with differentFe/Mo ratios. The products after the reduction consisted of twophases, viz. intermetallic FexMoy compound and metallic Fe orMo. XRD analyses revealed that the former had microcrystallinestructure while the latter were in crystalline form. This workshows that gas-solid reaction method, together with powdermetallurgy technique is a promising process route towards theproduction of novel metallic alloys such as Fe2Mo intermetallicwith micro- and nanocrystalline grains.</p><p><b>Key words</b>: nanoalloys, intermetallics, iron-molybdenumalloy, hydrogen reduction, thermogravimetry, fluidized bed,mechanical properties, structure</p>
297

Mechanism of the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis

Svedružić, Draženka. January 2005 (has links)
Thesis (Ph.D.)--University of Florida, 2005. / Title from title page of source document. Document formatted into pages; contains 122 pages. Includes vita. Includes bibliographical references.
298

Formation and dissociation reaction rates and relevant kinetic behavior of propane gas hydrate (PGH)

Song, Feng. January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains xi, 59 p. : ill. Includes abstract. Includes bibliographical references (p. 57-59).
299

Development of a simple statistical mechanical model of protein folding kinetics /

Alm, Eric. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (pages 49-54).
300

Design, synthesis, and evaluation of novel irreversible inhibitors for caspases

Ekici, Özlem Doğan, January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Chemistry and Biochemistry, Georgia Institute of Technology, 2004. Directed by James C. Powers. / Vita. Includes bibliographical references (leaves 132-151).

Page generated in 0.0476 seconds