• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molten-salt Catalytic Pyrolysis (MSCP): A Single-pot Process for Fuels from Biomass

Gu, Xiangyu 29 April 2015 (has links)
A novel process for single-pot conversion of biomass to biofuels was developed called the molten salt catalytic pyrolysis (MSCP) method. The proposed single-pot MSCP process proved to be an inherently more efficient and cost-effective methodology for converting lignocellulosic biomass. In this study, several parameters that affect yield of bio-oil were investigated including carrier gas flow rate; pyrolysis temperature; feed particle size; varying types of molten salt and catalysts. Use of molten salt as the reaction medium offered higher liquid yield and experiments containing ZnCl2 showed higher yield than other chloride salts. The highest yield of bio-oil was up to 66% obtained in a ZnCl2-KCl-LiCl ternary molten salt system compared with 32.2% at the same condition without molten salts. In addition, the effect of molten salt on the composition of bio-oil was also studied. It was observed that molten salt narrowed the product distribution of bio-oil with furfural and acetic acid as the only two main components in the liquid with the exception of water. Finally, a thermogravimetric kinetic study on the pyrolysis of biomass in MSCP was conducted.
2

Processing and Characterization of Nanocellulose Composites: The Leap from Poly(lactic acid) to Polyamide 6

Caitlyn Michelle Clarkson (8774828) 02 May 2020 (has links)
This disseration covers the processing and characterization of nanocellulose polymer composites. In this disseration, two fiber spinning methods were developed to create high stiffness nanocomposite fibers from renewably-sourced materials and the properties of these nanocomposites were evaluated. Additionally, bulk nanocomposites were created and some of the properties of these materials, for different types of nanoparticles, are also discussed. Evaluation of nanocellulose as a nucleation agent in poly(lactic acid) is also presented for very small concentrations of nanocelluloses in a plasticized polymer.
3

<strong>DEVELOPMENT OF INSTRUMENTATION AND ALGORITHMS FOR CHEMICAL STRUCTURE AND KINETICS ANALYSIS IN CHEMICAL IMAGING </strong>

Jiayue Rong (16360959) 20 June 2023 (has links)
<p>    </p> <p>Development on instrumentation and algorithms for chemical structure and chemical kinetics are discussed in this thesis. In Chapter 2 and 3, a consensus equilibrium formalism is introduced for the integration of multiple quantum chemical calculations of molecular and electronic structure. In multi-agent consensus equilibrium (MACE), iterative updates in structure optimization are intertwined with the net output, representing an equilibrium balance between multiple computational agents. MACE structure calculations from the integration of multiple low-level electronic structure calculations were compared favorably for small molecules, with results evaluated through comparison with higher level structure (CCSD). Notably, MACE results differed substantially from the average of the independent computational agent outputs, with MACE yielding improved agreement with higher-level CCSD calculations. The primary focus is on the development of the mathematical framework for implementing MACE for molecular and electronic structure determination, these initial preliminary results suggest potential promise for the use of MACE to improve the accuracy of low-level electronic structure calculations through the integration of multiple parallel methods. In Chapter 4 and 5, Fourier- transform fluorescence recovery after photobleaching (FT-FRAP) coupled with periodically comb pattern was demonstrated to monitor the controlled-release mechanisms of microparticles. By monitoring the time-lapse recovery patterns, spatial mobility were decoded in FT domain. Due to the nature of mobility encoded in FT domain, substantial improvements were demonstrated in terms of enhanced signal-to-noise, simplified mathematics, low requirements of sampling, and multiphoton compatibility to probe inside samples. FT-FRAP was able to discriminate and quantify the internal diffusion and exchange to higher mobility in fitting the recovery kinetics within microparticles. Theoretical modeling of exchange and diffusion- controlled release revealed that both RS and RL microparticles exhibited similar exchange decay, with RL having a much higher diffusion decay. The microscopically higher diffusion of RL microparticles is consistent with the dissolution performance of RL microparticles macroscopically. The distinction of controlled release mechanisms provided by FT-FRAP is important to understand and further optimize the design of controlled release systems for GI tract. </p>
4

Application of Modified Chitosan for Recovery of Heavy Metals Found in Spent Batteries

Babakhani, Ataollah 11 April 2022 (has links)
Finding economical and environmentally friendly processes to recover heavy metals (HMs) from spent batteries is a research priority to move toward sustainability. Adsorption seems an acceptable procedure to replace the current separation/purification stage of hydrometallurgical techniques. Chitosan is an efficient adsorbent for HM uptake from aqueous solutions. Nevertheless, in practice, chitosan modification is unavoidable to improve its physicochemical properties. Sodium tripolyphosphate is an environmentally benign crosslinker that can be used for chitosan modification. In addition, ion-imprinting technique could potentially enhance the adsorption efficiency and selectivity of crosslinked chitosan. Considering the above, the primary purposes of this research were: investigating the adsorption efficiency of chitosan for heavy metals uptake from synthetic solutions; modifying chitosan by crosslinking alone and combined with ion-imprinting techniques to improve the physicochemical properties as well as adsorption capacity and selectivity of chitosan; evaluating and comparing the adsorption efficiency of modified chitosan beads for the adsorption of Cd(II), Ni(II) and Co(II) in single and multicomponent batch adsorption systems. Chitosan and sodium tripolyphosphate crosslinked chitosan beads were prepared to remove Cd(II) from aqueous solution in the first phase. FTIR and XRD of the synthesized beads showed partial consumption of chitosan amine groups and a decrease in crystallinity of chitosan structure over crosslinking reaction. The isotherm and thermodynamic studies showed that Langmuir isotherm was the best fit to the experimental data of Cd(II) adsorption on crosslinked chitosan and all the adsorption reactions were endothermic and spontaneous. A reduced quadratic model, constructed by the Response Surface Methodology (RSM), indicated that the Cd(II) adsorption uptake of 99.87 (mg/g) was achieved at 55 °C and 2.92 % (w/v) crosslinking degree. Then, chitosan and crosslinked chitosan beads by sodium tripolyphosphate were used for Ni(II) adsorption from aqueous media in the second phase. The BET characterization showed that increasing the crosslinking degree reduced the chitosan beads' surface area and their total pore volume. The Langmuir model described the experimental results best and showed that the maximum adsorption capacity of chitosan (80.00 mg/g) decreased after crosslinking (52.36 mg/g). In addition, a reduced quadratic model with a correlation coefficient of 0.96 was established to correlate the adsorption uptake of Ni(II) with pH and crosslinking degree. In the third phase, the adsorption of Ni(II) and Cd(II) ions from single and binary metal ions solutions onto chitosan and crosslinked chitosan beads was studied. The extended Freundlich model fitted the adsorption equilibrium data in the binary system, implying the existence of preference in the order of Ni(II) > Cd(II). Desorption studies with a mixture of NaCl and H2SO4 were also conducted during this phase, demonstrating a desorption efficiency of greater than 85 %. In the fourth phase, the removal of cadmium from aqueous solution was examined using a novel Cd(II)-imprinted crosslinked chitosan. SEM, FTIR, TGA, and BET characterizations revealed that the ion-imprinted chitosan beads had better physicochemical properties than chitosan beads and superior potential adsorption properties than non-imprinted crosslinked chitosan beads. The isotherm and thermodynamic studies revealed that the Langmuir isotherm fitted the Cd(II) experimental data the best, and the adsorption reactions were spontaneous and endothermic. The kinetics data were also best fitted by the pseudo-second-order equation. Finally, the ion-imprinted crosslinked chitosan beads were employed for the selective adsorption of Cd(II) in a competitive adsorption system of Cd(II)-Ni(II)-Co(II) in phase five. The characterization of the prepared adsorbents was performed using XRD and BET, showing a higher surface area of ion-imprinted crosslinked chitosan than non-imprinted crosslinked chitosan beads. The Extended Langmuir model fitted the experimental results obtained from the multi-component system, indicating that ion-imprinted crosslinked chitosan had a higher total metal uptake with better selectivity toward Cd(II) uptake compared to non-imprinted crosslinked chitosan. Studying the adsorption mechanism in a ternary system showed that the adsorption was governed by chemical binding and ion exchange mechanisms in the ternary system. In conclusion, crosslinking by sodium tripolyphosphate improved chitosan physiochemical properties; however, it resulted in a decrease in HM adsorption uptake. The RSM was used to assess the effect of pH, temperature, and crosslinking degree and optimize the adsorption uptake of chitosan. Also, ion-imprinting was effective in enhancing the adsorption capacity and selectivity of crosslinked chitosan for the ion used as a template (Cd(II)) in preparing ion-imprinted crosslinked chitosan.
5

Improving photofermentative hydrogen production through metabolic engineering and DOE (Design of Experiments)

Liu, Yuan 03 1900 (has links)
A l’heure actuelle, les biocarburants renouvelables et qui ne nuit pas à l'environnement sont à l'étude intensive en raison de l'augmentation des problèmes de santé et de la diminution des combustibles fossiles. H2 est l'un des candidats les plus prometteurs en raison de ses caractéristiques uniques, telles que la densité d'énergie élevée et la génération faible ou inexistante de polluants. Une façon attrayante pour produire la H2 est par les bactéries photosynthétiques qui peuvent capter l'énergie lumineuse pour actionner la production H2 avec leur système de nitrogénase. L'objectif principal de cette étude était d'améliorer le rendement de H2 des bactéries photosynthétiques pourpres non sulfureuses utilisant une combinaison de génie métabolique et le plan des expériences. Une hypothèse est que le rendement en H2 pourrait être améliorée par la redirection de flux de cycle du Calvin-Benson-Bassham envers du système de nitrogénase qui catalyse la réduction des protons en H2. Ainsi, un PRK, phosphoribulose kinase, mutant « knock-out » de Rhodobacter capsulatus JP91 a été créé. L’analyse de la croissance sur des différentes sources de carbone a montré que ce mutant ne peut croître qu’avec l’acétate, sans toutefois produire d' H2. Un mutant spontané, YL1, a été récupéré qui a retenu l'cbbP (codant pour PRK) mutation d'origine, mais qui avait acquis la capacité de se développer sur le glucose et produire H2. Une étude de la production H2 sous différents niveaux d'éclairage a montré que le rendement d’YL1 était de 20-40% supérieure à la souche type sauvage JP91. Cependant, il n'y avait pas d'amélioration notable du taux de production de H2. Une étude cinétique a montré que la croissance et la production d'hydrogène sont fortement liées avec des électrons à partir du glucose principalement dirigés vers la production de H2 et la formation de la biomasse. Sous des intensités lumineuses faibles à intermédiaires, la production d'acides organiques est importante, ce qui suggère une nouvelle amélioration additionnel du rendement H2 pourrait être possible grâce à l'optimisation des processus. Dans une série d'expériences associées, un autre mutant spontané, YL2, qui a un phénotype similaire à YL1, a été testé pour la croissance dans un milieu contenant de l'ammonium. Les résultats ont montré que YL2 ne peut croître que avec de l'acétate comme source de carbone, encore une fois, sans produire de H2. Une incubation prolongée dans les milieux qui ne supportent pas la croissance de YL2 a permis l'isolement de deux mutants spontanés secondaires intéressants, YL3 et YL4. L'analyse par empreint du pied Western a montré que les deux souches ont, dans une gamme de concentrations d'ammonium, l'expression constitutive de la nitrogénase. Les génomes d’YL2, YL3 et YL4 ont été séquencés afin de trouver les mutations responsables de ce phénomène. Fait intéressant, les mutations de nifA1 et nifA2 ont été trouvés dans les deux YL3 et YL4. Il est probable qu'un changement conformationnel de NifA modifie l'interaction protéine-protéine entre NifA et PII protéines (telles que GlnB ou GlnK), lui permettant d'échapper à la régulation par l'ammonium, et donc d'être capable d'activer la transcription de la nitrogénase en présence d'ammonium. On ignore comment le nitrogénase synthétisé est capable de maintenir son activité parce qu’en théorie, il devrait également être soumis à une régulation post-traductionnelle par ammonium. Une autre preuve pourrait être obtenue par l'étude du transcriptome d’YL3 et YL4. Une première étude sur la production d’ H2 par YL3 et YL4 ont montré qu'ils sont capables d’une beaucoup plus grande production d'hydrogène que JP91 en milieu d'ammonium, qui ouvre la porte pour les études futures avec ces souches en utilisant des déchets contenant de l'ammonium en tant que substrats. Enfin, le reformage biologique de l'éthanol à H2 avec la bactérie photosynthétique, Rhodopseudomonas palustris CGA009 a été examiné. La production d'éthanol avec fermentation utilisant des ressources renouvelables microbiennes a été traitée comme une technique mature. Cependant, la plupart des études du reformage de l'éthanol à H2 se sont concentrés sur le reformage chimique à la vapeur, ce qui nécessite généralement une haute charge énergetique et résultats dans les émissions de gaz toxiques. Ainsi le reformage biologique de l'éthanol à H2 avec des bactéries photosynthétiques, qui peuvent capturer la lumière pour répondre aux besoins énergétiques de cette réaction, semble d’être plus prometteuse. Une étude précédente a démontré la production d'hydrogène à partir d'éthanol, toutefois, le rendement ou la durée de cette réaction n'a pas été examiné. Une analyse RSM (méthode de surface de réponse) a été réalisée dans laquelle les concentrations de trois facteurs principaux, l'intensité lumineuse, de l'éthanol et du glutamate ont été variés. Nos résultats ont montré que près de 2 moles de H2 peuvent être obtenus à partir d'une mole d'éthanol, 33% de ce qui est théoriquement possible. / Currently, renewable and environmentally friendly biofuels are under intensive study due to increasing health concerns and diminishing fossil fuels. H2 is one of the most promising candidates due to its unique characteristics, such as a high energy density and low to non-existent generation of pollutants. One attractive way to produce H2 is through photosynthetic bacteria which can capture light energy to drive H2 production with their nitrogenase system. The major aim of this study was to improve H2 yield of the purple non-sulfur photosynthetic bacteria using a combination of metabolic engineering and design of experiments. One hypothesis was that H2 yield could be improved by redirection of Calvin-Benson-Bassham cycle flux to the nitrogenase system which catalyzes the reduction of protons to H2. Thus, a PRK, phosphoribulose kinase, knock out mutant of Rhodobacter capsulatus JP91 was created. Analysis of growth with different carbon sources showed that this mutant could only grow in acetate medium without, however, producing any H2. A spontaneous mutant, YL1, was recovered which retained the original cbbP (encoding PRK) mutation, but which had gained the ability to grow on glucose and produce H2. A study of H2 production under different illumination levels showed that the yield of YL1 was 20-40% greater than the wild type JP91 strain. However, there was no appreciable improvement of the H2 production rate. A kinetic study showed that growth and hydrogen production are strongly linked with electrons from glucose being mostly directed to H2 production and biomass formation. Under low to intermediate light intensities, the production of organic acids was significant, suggesting further improvement of H2 yield is possible by process optimization. In a related series of experiments, another spontaneous mutant, YL2, which has a similar phenotype to YL1, was tested for growth in ammonium-containing media. The results showed that YL2 could only grow with acetate as carbon source, again, without producing any H2. Prolonged incubation in media not supporting growth of YL2 enabled the isolation of two interesting secondary spontaneous mutants, YL3 and YL4. Western blot analysis showed that both strains had constitutive nitrogenase expression under a range of ammonium concentrations. The genomes of YL2, YL3 and YL4 were sequenced in order to find the mutations responsible for this phenomenon. Interestingly, mutations of nifA1 and nifA2 were found in both YL3 and YL4. It is likely that a conformational change of NifA alters the protein-protein interaction between NifA and PII proteins (such as GlnB or GlnK), enabling it to escape regulation by ammonium and thus to be capable of activating nitrogenase transcription in the presence of ammonium. It is not clear how the synthesized nitrogenase is able to maintain its activity since in theory it should also be subject to posttranslational regulation by ammonium. Further evidence could be obtained by studying the transcriptome of YL3 and YL4. An initial study of H2 production by YL3 and YL4 showed that they are capable of much greater hydrogen production than JP91 in ammonium medium, which opens the door for future studies with these strains using ammonium-containing wastes as substrates. Finally, the biological reformation of ethanol to H2 with the photosynthetic bacterium, Rhodopseudomonas palustris CGA009 was examined. Ethanol production with microbial fermentation using renewable resources has been treated as a mature technique. However, most studies of the reformation of ethanol to H2 have focused on chemical steam reforming, which usually requires a high energy input and results in toxic gas emission. Thus biological reformation of ethanol to H2 with photosynthetic bacteria, which can capture light to meet the energy requirement of this reaction, seems to be more promising. A previous study had demonstrated hydrogen production from ethanol, however, the yield or the duration of this reaction were not examined. A RSM (response surface methodology) analysis was carried out in which three key factors, light intensity, ethanol and glutamate concentrations were varied. Our results showed that nearly 2 moles of H2 could be obtained from one mole of ethanol, 33% of what is theoretically possible.

Page generated in 0.0693 seconds