• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Kinetics of Thermal Decomposition and Hot-Stage Microscopy of Selected Energetic Cocrystals

Joshua Trevett Dean (8782151) 29 April 2020 (has links)
<p>The thermal decomposition of four energetic cocrystals composed of 4-amino-3,5-dinitropyrazole (ADNP)/diaminofurazan (DAF), 2,4,6-trinitrotoluene (TNT)/ 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL20), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/CL20, and 1-methyl-3,5-dinitro-1,2,4-triazole (MDNT)/CL20 were studied using simultaneous differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and hot-stage microscopy. The kinetic parameters of their thermal decomposition reaction were determined using the Kissinger and Ozawa kinetic analysis methods. Each cocrystal’s peak exothermic temperature (decomposition temperature), activation energy, and pre-exponential constant are reported. Furthermore, these parameters from each cocrystal were compared to the same parameters from the corresponding stoichiometric physical mixture in order to identify changes in behavior attributable to the cocrystallization process. For ADNP/DAF, the cocrystal shows an 8% increase in the peak exotherm temperature and a 11-13% decrease in peak activation energy as compared to its physical mixture. For TNT/CL20, this comparison shows a much smaller change in the peak exotherm temperature (<1%) but shows a 5% decrease in activation energy. This cocrystal also experiences phase stabilization—where a phase transition of one or both coformers is omitted from the decomposition process. The HMX/CL20 cocrystal shows a 1% change in the peak exotherm temperature and shows a 2% increase in activation energy. Finally, for MDNT/CL20, this comparison shows nearly a 4% increase and a drastic decrease in peak activation energy by 42-44%. Cocrystallization clearly affects the thermal decomposition and reaction kinetics of these materials, offering the potential to create a hybrid-class of energetic materials which combines the high performance of an energetic material with the safety and insensitivity of another. </p>
2

Určení kinetických parametrů reakcí pomocí DSC měření / determination of kinetic parameter of reactions using DSC

Kopecký, Jan January 2018 (has links)
The master thesis deals with DSC measurments a calculation of kinetic parameters. In the theoretical part, iron alotropy is briefly described, followed by a description of the DSC analysis itself. The thesis also includes division and derivation of isoconversional methods for calculating the activation energy. In the experimental part, a series of measurments is perfomed on pure iron prepared by Cold Spray method. In the paper the influence of deformation on the Curie temperature of the magnetic transformation in -Fe and transformation > is investigated. The activation energy is calculated for transformation > for different degrees of deformation. The degree of deformation is monitored by channeling contrast.

Page generated in 0.0608 seconds