• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Foraging ecology and reproductive energetics of the Kittlitz's murrelet (Brachyramphus brevirostris) in Southeast Alaska

Hatch, Nick R. 05 December 2011 (has links)
The Kittlitz's murrelet (Brachyramphus brevirostris) is a species of conservation concern over the entirety of its known range, which spans coastal Alaska and northeastern Russia. Concerns about the status of the species have been raised due to evidence of population declines in key breeding areas, low reproductive output, and perceived threats to adult survival. A general lack of information related to vital rates and natural history for this species has hampered efforts to address potential threats and drivers of population decline. This thesis addresses the hypothesis that foraging conditions and nutritional stress may be related to the observed low reproductive output and apparent population declines. I used stable isotope analysis of Kittlitz's murrelet feathers and blood to assess foraging habits during four separate periods across the annual cycle. I also used stable isotope signatures (δ¹⁵N and δ¹³C) in feathers from museum specimens collected in southeastern Alaska during 1907–1984 to investigate potential long-term trends in food habits and foraging ecology. I found that δ¹⁵N progressively increased by 5‰ between the vernal pre-alternate molt and the autumnal pre-basic molt, equivalent to an increase of 1.5 trophic levels for assimilated prey, whereas seasonal patterns in δ¹³C suggest shifts in foraging habitat between breeding and non-breeding periods. These results indicate that the pre-breeding diet was comprised primarily of low trophic level prey from offshore habitats, such as macrozooplankton and/or larval fish. During the summer breeding season, Kittlitz's murrelets gradually switched to consuming higher proportions of planktivorous fish from nearshore habitats. By the post-breeding period, during the pre-basic molt, the diet was comprised almost exclusively of higher trophic level prey, presumably forage fish, from offshore habitats. Based on stable isotope signatures of murrelet feathers from museum specimens, these seasonal patterns were evident during the past century (1907-2009). δ¹³C in feathers grown during pre- and post-breeding (pre-alternate and pre-basic molts, respectively) became significantly more depleted over the last century, however, suggesting either a gradual change in diet and/or foraging habitat or a long-term shift in the isotopic composition of prey. I investigated potential energy constraints on reproduction in Kittlitz's murrelets by constructing a bioenergetics model to estimate energy budgets for breeding adult Kittlitz's murrelets under different scenarios of prey energy content and commuting distance between foraging areas and nest sites. Estimated field metabolic rate (FMR) of breeding Kittlitz's murrelets during the chick-rearing period exceeded the hypothetical maximum sustainable working capacity (MSWC; 4 times basal metabolic rate [BMR]) under empirically derived scenarios of prey energy content and commuting distance. This suggests that, under conditions of low energy content in available prey and/or long commuting distances to inland nest sites, Kittlitz's murrelets would be required to expend energy at a rate that, if maintained over an extended period, could be detrimental to subsequent adult survival and overall fitness. In addition, energy expenditure rates at the high end of the estimated range may exceed the rate at which food energy can be assimilated by adult murrelets. Metabolism of fat reserves, as indicated by mass loss during the breeding season, may be a partial, although limited, solution to periods of high energy demand for breeding adults. This thesis research is the first to indicate that Kittlitz's murrelets rely on distinctly different prey resources during different periods of the annual cycle. The previously unappreciated seasonal complexity of Kittlitz's murrelet foraging ecology offers a new perspective on potential factors limiting survival and reproduction in this species of conservation concern. In addition, my research suggests an adaptive explanation for the low breeding frequency and low reproductive output of Kittlitz's murrelets that is related to the exceptionally high energy expenditure rates required to raise young at nest sites as much as 70 km inland from the coast and up to 2,500 m above sea level. Because of their high level of reproductive effort, Kittlitz's murrelets may be more dependent on the high availability of high-lipid marine prey than other seabirds. / Graduation date: 2012
2

Breeding ecology and nest site selection of Kittlitz's murrelets on Kodiak Island, Alaska

Lawonn, Matthew James 14 December 2012 (has links)
The Kittlitz's murrelet (Brachyramphus brevirostris) is a rare member of the seabird family Alcidae that breeds in coastal areas of Alaska and Beringian Russia. The species belongs to the genus Brachyramphus, an unusual seabird taxon in which all three extant species nest non-colonially, situating their nests up to 75 km inland from coastal marine waters. This nesting strategy is different from that of most seabird species, which tend to nest colonially on remote islands or sea cliffs, where terrestrial predators are generally absent or cannot easily access nests. Within the genus Brachyramphus, Kittlitz's murrelet is notable because a majority of the global population appears to nest on the surface of the ground in rocky alpine habitat near inland or tidewater glaciers, foraging in adjacent marine waters influenced by glacial outflows. The unusual nesting habits of Kittlitz's murrelet have made the study of its nesting ecology difficult, and gaps therefore exist in our understanding of the species' breeding biology. Kittlitz's murrelet populations have declined substantially in core areas of its range, causing the U. S. Fish and Wildlife Service to designate the species as a candidate for protection under the Endangered Species Act. A better understanding of Kittlitz's murrelet nesting ecology is crucial for determining potential causes of these declines and for future management of the species. To this end, I studied Kittlitz's murrelet breeding ecology and nest site selection during 2008-2011 on Kodiak Island, Alaska, in an unglaciated area that was recently found to have large numbers of accessible nests. I and my colleagues found 53 active Kittlitz's murrelet nests in inland scree-dominated habitats and placed remote, motion-sensing cameras at 33 nests. Adults exchanged incubation duties at the nest every 24 or 48 h, almost exclusively during early morning twilight. Following hatching of eggs, parents provisioned their single nestling with an average of 3.9 to 4.8 fish per day, depending on the year. Parental visits to the nest during chick-rearing occurred primarily after sunrise in the early to mid-morning hours, and during evening twilight. Fish were delivered singly to the chick, and Pacific sand lance (Ammodytes hexapterus), a high-lipid forage fish, accounted for about 92% of all identifiable chick meal deliveries. Chick growth rates were high relative to confamilial species, consistent with the high quality of chick diets; the logistic growth rate constant (K) was 0.291, greater than that for any other semi-precocial alcid. Chicks fledged an average of 24.8 d after hatching and asymptotic chick body mass averaged about 135.5 g, approximately 58% of adult body mass. Age at fledging, asymptotic chick body mass (% adult mass), and the number of meal deliveries required to fledge a chick were all lower than or as low as any other species of semi-precocial alcid. The average estimated nest survival rate during 2008-2011 was 0.093 (95% CI = 0.01–0.30), which is extremely low compared to other species in the family Alcidae, and is almost certainly insufficient to sustain a stable population. The primary causes of nest failure were depredation (47% of total nest fates), mostly by red foxes (Vulpes vulpes), and unexplained nestling mortality on the nest (21% of nest fates). Saxitoxin and/or pathogenic endoparasite burdens were observed in five of six necropsied chick carcasses, suggesting possible causes for chick mortality not directly attributable to predation. Habitat characteristics of Kittlitz's murrelet nest sites differed significantly from unused sites at several scales. At a small scale (within 5 m of the nest), nest sites had a lower percent coverage of vegetation and higher percent coverage of intermediate-sized rocks (5–30 cm diameter), compared to randomly selected unused sites. Nest sites were also located on steeper, more north-facing slopes compared to randomly selected sites. Nest sites also had a lower percent coverage of vegetation than randomly-selected sites at larger scales (within 25 m and 50 m of the nest site). Nest sites were located significantly farther from the edge of densely-vegetated habitats than random sites. There was no evidence that nest sites were different from randomly-selected sites in terms of elevation, proximity to ridgelines, or proximity to the open ocean, although a low degree of variation within the study area for these habitat characteristics may have precluded detection of potential differences. Nest survival rates did not co-vary with slope, percent vegetation coverage, distance from vegetated edges, or percent cover of intermediate-sized rocks; however, this result may be an artifact of a limited sample size. The results of this thesis will provide managers with a better understanding of the factors that may limit Kittlitz's murrelet nesting success, such as nest predation and forage fish availability, as well as factors that may influence the quality and distribution of Kittlitz’s murrelet nesting habitat in the future, given on-going and progressive climate change. / Graduation date: 2013

Page generated in 0.0524 seconds