Spelling suggestions: "subject:"klein tunneling"" "subject:"klein funneling""
1 |
Electronic and plasmonic properties of real and artificial Dirac materialsWoollacott, Claire January 2015 (has links)
Inspired by graphene, I investigate the properties of several different real and artificial Dirac materials. Firstly, I consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting localised surface plasmons, and study the quantum properties of the collective plasmons resulting from the near field dipolar interaction between the nanoparticles. I analytically investigate the dispersion, the effective Hamiltonian and the eigenstates of the collective plasmons for an arbitrary orientation of the individual dipole moments. When the polarisation points close to normal to the plane the spectrum presents Dirac cones, similar to those present in the electronic band structure of graphene. I derive the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent chiral Dirac-like massless bosonic excitations that present similar effects to those of electrons in graphene, such as a non-trivial Berry phase and the absence of backscattering from smooth inhomogeneities. I further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the collective plasmon dispersion by modifying the polarisation of the localized surface plasmons, paving the way for a fully tunable plasmonic analogue of graphene. I present a phase diagram of gapless and gapped phases in the collective plasmon dispersion depending on the dipole orientation. When the inversion symmetry of the honeycomb structure is broken, the collective plasmons become gapped chiral Dirac modes with an energy-dependent Berry phase. I show that this concept can be generalised to describe many real and artificial graphene-like systems, labeling them Dirac materials with a linear gapped spectrum. I also show that biased bilayer graphene is another Dirac material with an energy dependent Berry phase, but with a parabolic gapped spectrum. I analyse the relativistic phenomenon of Klein Tunneling in both types of system. The Klein paradox is one of the most counter-intuitive results from quantum electrodynamics but it has been seen experimentally to occur in both monolayer and bilayer graphene, due to the chiral nature of the Dirac quasiparticles in these materials. The non-trivial Berry phase of pi in monolayer graphene leads to remarkable effects in transmission through potential barriers, whereas there is always zero transmission at normal incidence in unbiased bilayer graphene in the npn regime. These, and many other 2D materials have attracted attention due to their possible usefulness for the next generation of nano-electronic devices, but some of their Klein tunneling results may be a hindrance to this application. I will highlight how breaking the inversion symmetry of the system allows for results that are not possible in these system's inversion symmetrical counterparts.
|
2 |
Etude théorique de nouveaux concepts de nano-transistors en graphène / Theoretical study of new concepts of graphene based transistorsBerrada, Salim 16 May 2014 (has links)
Cette thèse porte sur l’étude théorique de nouveaux concepts de transistors en graphène par le formalisme des fonctions de Green dans l’hypothèse du transport balistique. Le graphène est un matériau bidimensionnel composé d’atomes de carbone organisés en nid d’abeille. Cette structure confère des propriétés uniques aux porteurs de charge dans le graphène, comme une masse effective nulle et un comportement ultra-relativiste (fermions de Dirac), ce qui conduit à des mobilités extraordinairement élevées. C’est pourquoi des efforts très importants ont été mis en œuvre dans la communauté scientifique pour la réalisation de transistors en graphène. Cependant, en vue de nombreuses applications, le graphène souffre de l’absence d’une bande d’énergie interdite. De plus, dans le cas des transistors conventionnels à base de graphène (GFET), cette absence de bande interdite, combinée avec l’apparition de l’effet tunnel de Klein, a pour effet de dégrader considérablement le rapport I_ON/I_OFF des GFET. L’absence de gap empêche également toute saturation du courant dans la branche N – là où se trouve le maximum de transconductance pour des sources et drain dopés N – et ne permet donc pas de tirer profit des très bonnes performances fréquentielles que le graphène est susceptible d’offrir grâce aux très hautes mobilités de ses porteurs. Cependant, de précédents travaux théorique et expérimentaux ont montré que la réalisation d’un super-réseau d’anti-dots dans la feuille de graphène – appelée Graphene NanoMesh (GNM) – permettait d’ouvrir une bande interdite dans le graphène. On s’est donc d’abord proposé d’étudier l’apport de l’introduction de ce type de structure pour former canal des transistors – appelés GNMFET – par rapport aux GFET « conventionnels ». La comparaison des résultats obtenus pour un GNM-FET avec un GFET de mêmes dimensions permettent d’affirmer que l’on peut améliorer le rapport I_ON/I_OFF de 3 ordres de grandeurs pour une taille et une périodicité adéquate des trous. Bien que l’introduction d’un réseau de trous réduise légèrement la fréquence de coupure intrinsèque f_T, il est remarquable de constater que la bonne saturation du courant dans la branche N, qui résulte de la présence de la bande interdite dans le GNM, conduit à une fréquence maximale d’oscillation f_max bien supérieure dans le GNM-FET. Le gain en tension dans ce dernier est aussi amélioré d’un ordre de grandeur de grandeur par rapport au GFET conventionnel. Bien que les résultats sur le GNM-FET soient très encourageants, l’introduction d’une bande interdite dans la feuille de graphène induit inévitablement une masse effective non nulle pour les porteurs, et donc une vitesse de groupe plus faible que dans le graphène intrinsèque. C’est pourquoi, en complément de ce travail, nous avons exploré la possibilité de moduler le courant dans un GFET sans ouvrir de bande interdite dans le graphène. La solution que nous avons proposée consiste à utiliser une grille triangulaire à la place d’une grille rectangulaire. Cette solution exploite les propriétés du type "optique géométrique" des fermions de Dirac dans le graphène, qui sont inhérentes à leur nature « Chirale », pour moduler l’effet tunnel de Klein dans le transistor et bloquer plus efficacement le passage des porteurs dans la branche P quand le dopage des sources et drains sont de type N. C’est pourquoi nous avons choisi d’appeler ce transistor le « Klein Tunneling FET » (KTFET). Nous avons pu montrer que cette géométrie permettrait d’obtenir un courant I_off plus faible que ce qui est obtenu d’habitude, pour la même surface de grille, pour les GFET conventionnels. Cela offre la perspective d’une nouvelle approche de conception de dispositifs permettant d’exploiter pleinement le caractère de fermions de Dirac des porteurs de charges dans le graphène. / This thesis is a theoretical study of new concepts of graphene-based transistors using non equilibrium Green’s function formalism in the ballistic limit. Graphene is a two-dimensional material made of a honeycomb arrangement of carbon atoms. This crystallographic structure allows electrons to behave like ultra-relativistic particles, namely massless Dirac fermions. This yields extraordinary high mobility for charge carriers in this material and a huge potential for high frequency applications. Consequently, strong efforts have been made in the scientific community towards the implementation of this material as a channel for field effect transistors. Unfortunately, graphene suffers from the lack of an energy band gap, and the Klein tunneling effect that takes place in Graphene Field Effect Transistor’s (GFET) channel makes it impossible to back-scatter completely the carriers even for high potential barriers. This degrades considerably the I_ON/I_OFF ratio obtained in GFETs. Additionally, the absence of a band gap makes it impossible to obtain current saturation in the N branch, where the maximum of transconductance is reached for n-doped source and drain regions, preventing to take full advantage from the huge potential for high frequency application of graphene. Fortunately, it has been demonstrated in both theoretical and experimental works that Graphene NanoMesh (GNM), a structure obtained after punching an anti-dot super-lattice in the graphene sheet, can open a band gap for charge carriers. This has motivated our study of a field effect transistor where the GNM is used as a channel (GNMFET) and to compare its performance with the conventional GFET. Our study showed that the use of this type of transistors can improve the I_ON/I_OFF ratio up to 3 orders of magnitude when the GNM is carefully chosen. Though the introduction of the anti-dots in the graphene sheet reduces the transit frequency f_T, it is remarkable that the good saturation that occurs in the N branch, as a result of the band gap opening, yields a much higher maximum oscillation frequency f_max in the GNMFET. The voltage gain is also improved by an order of magnitude compared to its GFET counterpart. Though the performance of the GNMFET is very encouraging, the band gap opening in the GNM confers a finite effective mass to the carriers in graphene, resulting in lower group velocity compared to the case of pristine graphene. This is why we explored a new solution that avoids the band gap opening to modulate the current in graphene-based transistors. We proposed the use of a triangular gate of the transistor. The operation of this transistor relies on optics-like behavior of Dirac fermions that emerges from their “chiral” properties, giving the possibility to modulate the Klein tunneling. We called this transistor the “Klein Tunneling Field Effect Transistor” (KTFET), and we showed that that this prismatic gate shape enables the KTFET to have an “OFF” current I_OFF that is lower than the one that it obtained for the conventional GFET and which is determined by the Dirac point. This study paves the way for a new approach to designing graphene devices which fully exploits the Dirac fermions nature of particles in graphene.
|
Page generated in 0.0699 seconds