Spelling suggestions: "subject:"kneser cographs"" "subject:"kneser bigraphs""
1 |
Dominating sets in Kneser graphsGorodezky, Igor January 2007 (has links)
This thesis investigates dominating sets in Kneser graphs as well as a selection of other topics related to graph domination. Dominating sets in Kneser graphs, especially those of minimum size, often correspond to interesting combinatorial incidence structures.
We begin with background on the dominating set problem and a review of known bounds, focusing on algebraic bounds. We then consider this problem in the Kneser graphs, discussing basic results and previous work. We compute the domination number for a few of the Kneser graphs with the aid of some original results. We also investigate the connections between Kneser graph domination and the theory of combinatorial designs, and introduce a new type of design that generalizes the properties of dominating sets in Kneser graphs. We then consider dominating sets in the vector space analogue of Kneser graphs. We end by highlighting connections between the dominating set problem and other areas of combinatorics. Conjectures and open problems abound.
|
2 |
Dominating sets in Kneser graphsGorodezky, Igor January 2007 (has links)
This thesis investigates dominating sets in Kneser graphs as well as a selection of other topics related to graph domination. Dominating sets in Kneser graphs, especially those of minimum size, often correspond to interesting combinatorial incidence structures.
We begin with background on the dominating set problem and a review of known bounds, focusing on algebraic bounds. We then consider this problem in the Kneser graphs, discussing basic results and previous work. We compute the domination number for a few of the Kneser graphs with the aid of some original results. We also investigate the connections between Kneser graph domination and the theory of combinatorial designs, and introduce a new type of design that generalizes the properties of dominating sets in Kneser graphs. We then consider dominating sets in the vector space analogue of Kneser graphs. We end by highlighting connections between the dominating set problem and other areas of combinatorics. Conjectures and open problems abound.
|
3 |
Topics In Probabilistic CombinatoricsJohnson, Darin Bryant 01 January 2009 (has links)
This paper is a compilation of results in combinatorics utilizing the probabilistic method. Below is a brief description of the results highlighted in each chapter. Chapter 1 provides basic definitions, lemmas, and theorems from graph theory, asymptotic analysis, and probability which will be used throughout the paper. Chapter 2 introduces the independent domination number. It is then shown that in the random graph model G(n,p) with probability tending to one, the independent domination number is one of two values. Also, the the number of independent dominating sets of given cardinality is analyzed statistically. Chapter 3 introduces the tree domination number. It is then shown that in the random graph model G(n,p) with probability tending to one, the tree domination number is one of two values. Additional related domination parameters are also discussed. Chapter 4 introduces a generalized rook polynomial first studied by J. Goldman et al. Central and local limit theorems are then proven for certain classes of the generalized rook polynomial. Special cases include known central and local limit theorems for the Stirling numbers of the first and second kind and additionally new limit theorems for the Lah numbers and certain classes of known generalized Stirling numbers. Chapter 5 introduces the Kneser Graph. The exact expected value and variance of the distance between [n] and a vertex chosen uniformly at random is given. An asymptotic formula for the expectation is found.
|
4 |
Graph Homomorphisms: Topology, Probability, and Statistical PhysicsMartinez Figueroa, Francisco Jose 11 August 2022 (has links)
No description available.
|
Page generated in 0.0362 seconds