• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 64
  • 24
  • 23
  • 16
  • 15
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 2
  • Tagged with
  • 406
  • 167
  • 67
  • 46
  • 46
  • 45
  • 44
  • 43
  • 41
  • 39
  • 39
  • 38
  • 33
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Investigations into the role of mPIP, the mouse homologue of hPIP/GCDFP-15, in innate host defense

Nistor, Andreea 25 April 2008 (has links)
mPIP is a mouse homologue of human PIP/GCDFP-15 which is an established marker of both malignant and benign pathological conditions of the mammary gland. mPIP gene expression has been identified in both lacrimal and salivary glands of healthy mice and the mPIP protein has been detected in saliva. The mPIP protein has been found to bind oral bacteria, showing the highest affinity for streptococci, suggesting a potential function of mPIP in the non-immune host defense in the mouse oral cavity. Since the exact functions of mPIP are still unknown, we examined the roles of mPIP through both in vitro and in vivo studies, specifically to address the possible role of this protein in non-immune host response through modulating the oral flora. The in vitro studies were primarily focused on elucidation of the consequences of interaction between mPIP and oral bacteria, in particular to examine whether mPIP plays a role in bacterial aggregation. The in vivo studies addressed the roles of mPIP through the analysis of an mPIP knockout mouse model generated in our laboratory. Following confirmation of the null mutation, the delineating the phenotype of this model was pursued through morphopathological analysis as well as examination of the impact of the lack of mPIP on the mouse oral flora. The null mutation in the mPIP knockout mice was confirmed by both the gene and protein analysis. Histological analysis revealed lymphocytic proliferation in both the submaxillary and prostate glands of the mPIP knockout mice. In addition, both quantitative and composition differences in the oral flora of mPIP knockout mice were identified when compared with wild-type controls. Specifically, a higher proportion of the oral bacteria of mPIP knockout mice were found to belong to genus Streptococcus and certain genera were found to be absent from the oral cavity of these mice. The effect of knockout mouse saliva, which lacks mPIP, on the aggregation of oral bacteria was compared to wild-type mouse saliva. Our data suggests that mPIP contributes to saliva-induced bacterial aggregation. While oral flora has multiple functions, including protection against infection, mPIP might play a role in the non-innate host defense through modulating the resident oral flora in the mouse. The identification of lymphocytic proliferation in submaxillary and prostate glands of mPIP knockout mice suggests that mPIP might also interfere with lymphocyte activity, playing a possible immunomodulatory role.
62

Site-specific Facilitation or Inhibition of Dopamine-reward by Viral Transfection of M5 Muscarinic Receptors in the Tegmentum of M5 Knockout Mice

Wasserman, David 28 July 2010 (has links)
Knockdown of the M5 acetylcholine muscarinic receptor in the ventral tegmental area (VTA) reduces brain-stimulation reward sensitivity in rats. Knockout (KO) of the M5 receptor in mice reduces morphine-induced dopamine efflux, locomotion, conditionedplace- preference, and mating-induced 30-110 kHz ultrasonic vocalizations (USVs). The GFP-labeled M5 receptor gene was transfected using a Herpes simplex virus either into the VTA or 0.2-0.7 mm posterior in the medial tegmentum (MT) of male M5 KO mice. HSV-M5-GFP transfection in VTA fully restored mating-induced USVs and augmented morphine-induced locomotion and stereotypy consistent with activation of DA neurons by M5 receptors. HSV-M5-GFP transfection sites in the MT inhibited USVs and morphine-induced locomotion presumably through inhibition of DA neurons. Putative transfection of M5 in GABA neurons of the rostromedial tegmental nucleus (RMTg) or 5HT neurons of the median raphe (mR) may explain this inhibition. Therefore, HSV-M5- GFP transfection in the VTA enhances DA-mediated behaviours while MT transfections inhibits these behaviours.
63

AGING AND THE DYNORPHINERGIC SYSTEM: EVALUATION OF MEMORY AND MOTOR SYSTEMS IN PRODYNORPHIN KNOCKOUT MICE

Nguyen, Xuan V. 01 January 2007 (has links)
Dynorphins, endogenous peptide neurotransmitters expressed in the central nervous system, have been implicated in diverse pathophysiological processes, including excitotoxicity, chronic inflammation, traumatic injury, cognitive impairment, and motor dysfunction, with significant changes with aging or age-related disease processes. This has led to the hypothesis that the suppression of dynorphin expression would produce beneficial effects on learning and memory and motor function. To assess the phenotypic manifestations of chronic suppression of endogenous dynorphin, knockout (KO) mice lacking the coding exons of the gene encoding the prodynorphin (Pdyn) precursor protein, were tested in a series of behavioral, biochemical, and molecular biological studies. Moderately aged Pdyn KO perform comparatively better than similarly aged wild-type (WT) mice in the water maze task, although no Pdyn effect was seen among young adult mice. In addition, young adult Pdyn KO mice show mildly improved performance on a passive avoidance task. Minimal baseline differences were noted in spontaneous locomotor activity in an open-field assay, but Pdyn deletion produced a relative sparing of motor dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To investigate the relationship between aging and brain dynorphin expression in mice, we examined dynorphin peptide levels at varying ages in hippocampus, striatum, and frontal cortex of WT mice by quantitative radioimmunoassay. While aging produces progressive decline in Dyn B in striatum and frontal cortex, Dyn A shows an upward trend in frontal cortex without significant change in striatum. Systemic MPTP produces significant short-term elevations in dynorphin peptides that regress to below baseline by 7 days. HPLC analysis of striatal dopamine shows an age-dependent increase in basal dopamine levels in Pdyn KO mice, an effect that is abolished after MPTP. Western blotting experiments demonstrate that Pdyn deletion is associated with greater phosphorylation at the serine-40 site of tyrosine hydroxylase (TH) despite relatively less total TH immunoreactivity, suggesting a suppressive effect of dynorphins on dopamine synthesis. Microarray analysis of hippocampal tissue from young and aged WT and Pdyn KO mice reveals a number of functional groups of genes demonstrating altered expression. The results of this dissertation support a role of endogenous dynorphins in age-associated cognitive and motor dysfunction.
64

Investigations into the role of mPIP, the mouse homologue of hPIP/GCDFP-15, in innate host defense

Nistor, Andreea 25 April 2008 (has links)
mPIP is a mouse homologue of human PIP/GCDFP-15 which is an established marker of both malignant and benign pathological conditions of the mammary gland. mPIP gene expression has been identified in both lacrimal and salivary glands of healthy mice and the mPIP protein has been detected in saliva. The mPIP protein has been found to bind oral bacteria, showing the highest affinity for streptococci, suggesting a potential function of mPIP in the non-immune host defense in the mouse oral cavity. Since the exact functions of mPIP are still unknown, we examined the roles of mPIP through both in vitro and in vivo studies, specifically to address the possible role of this protein in non-immune host response through modulating the oral flora. The in vitro studies were primarily focused on elucidation of the consequences of interaction between mPIP and oral bacteria, in particular to examine whether mPIP plays a role in bacterial aggregation. The in vivo studies addressed the roles of mPIP through the analysis of an mPIP knockout mouse model generated in our laboratory. Following confirmation of the null mutation, the delineating the phenotype of this model was pursued through morphopathological analysis as well as examination of the impact of the lack of mPIP on the mouse oral flora. The null mutation in the mPIP knockout mice was confirmed by both the gene and protein analysis. Histological analysis revealed lymphocytic proliferation in both the submaxillary and prostate glands of the mPIP knockout mice. In addition, both quantitative and composition differences in the oral flora of mPIP knockout mice were identified when compared with wild-type controls. Specifically, a higher proportion of the oral bacteria of mPIP knockout mice were found to belong to genus Streptococcus and certain genera were found to be absent from the oral cavity of these mice. The effect of knockout mouse saliva, which lacks mPIP, on the aggregation of oral bacteria was compared to wild-type mouse saliva. Our data suggests that mPIP contributes to saliva-induced bacterial aggregation. While oral flora has multiple functions, including protection against infection, mPIP might play a role in the non-innate host defense through modulating the resident oral flora in the mouse. The identification of lymphocytic proliferation in submaxillary and prostate glands of mPIP knockout mice suggests that mPIP might also interfere with lymphocyte activity, playing a possible immunomodulatory role.
65

Role of Cathepsin G in Atherosclerosis

Rafatian, Naimeh 11 January 2013 (has links)
Angiotensin II (Ang II) is an important modulator for development of atherosclerosis from early stage foam cell formation to advanced stage plaque rupture. Recently, the importance of locally generated Ang II, especially in macrophages, has become more evident. Generation of Ang II by several enzymes other than ACE and renin has been shown mainly in vitro. Cathepsin G is one these enzymes which is expressed in neutrophils and macrophages. Macrophages are one of the primary and crucial cells in atherosclerotic lesions which become lipid-laden foam cells through lipoprotein uptake. We hypothesized that activation of nuclear factors in foam cells increases Ang II by modulation of the renin angiotensin system (RAS) genes and cathepsin G. We also hypothesized that cathepsin G, through its Ang II generating activity and its other catalytic functions, promotes atherosclerosis. The present study assessed the Ang I and II levels and expression of the RAS genes in THP-1 cells, a human acute monocytic leukemia cell line, and in peritoneal and bone marrow-derived macrophages after exposure to acetylated LDL (ac-LDL). I also evaluated how RAS blockade would affect foam cell formation in THP-1 cells. In parallel, I assessed the role of cathepsin G in Ang II generation and in the progression of atherosclerosis in cathepsin G heterozygous knockout mice on an Apoe-/- background (Ctsg+/-Apoe-/- mice). Ac-LDL treatment increased Ang I and Ang II levels in cell lysates and media from THP-1 cells but not in peritoneal or bone marrow-derived macrophages from wild type C57BL/6 mice. In ac-LDL-treated THP-1 cells, ACE and cathepsin G mRNA levels and activities were elevated. Angiotensinogen mRNA is increased but not the angiotensinogen protein concentration. Renin mRNA level and activity were not altered by ac-LDL treatment. Blocking RAS by an AT1 receptor blocker, ACE inhibitors or a renin inhibitor decreased cholesteryl ester content of THP-1 cells after exposure to ac-LDL. To confirm that the Ang II effect on foam cell formation was not unique to ac-LDL, we treated the THP-1 macrophages with a renin inhibitor or an AT1 receptor inhibitor after exposure to oxidized LDL (ox-LDL). RAS blockade in ox-LDL-treated cells also abolished cholesteryl ester formation. To see how Ang II plays a role in foam cell formation we assessed the effect of RAS inhibitors on SR-A, the principal receptor for mediating ac-LDL entry into the cells and on acyl-CoA:cholesterol acyl transferase (ACAT-1), the enzyme responsible for intracellular cholesterol esterification. RAS blockade in both ac-LDL- and ox-LDL-treated cells decreased SR-A and ACAT-1 protein levels. Cathepsin G partial deficiency on an Apoe-/- background did not change Ang II levels in peritoneal or bone marrow-derived macrophage cell lysates or media. This deficiency also did not affect immunoreactive angiotensin peptide levels in atherosclerotic lesions. After 8 weeks on a high fat diet Ctsg+/-Apoe-/- mice were similar to Ctsg+/+Apoe-/- mice in terms of lesion size and serum cholesterol levels but the Ctsg+/+Apoe-/- mice had more advanced lesions with more collagen and smooth muscle cells and fewer macrophages. Moreover, Ctsg+/+Apoe-/- mice had more apoptotic cells than their Ctsg+/-Apoe-/- littermates. Overall, our findings indicate that Ang II is increased in foam cells and this endogenous Ang II is involved in cholesteryl ester formation, possibly by regulating the levels of ACAT-1 and SR-A. We did not find any role for cathepsin G in generation of Ang II in mice but cathepsin G does, nevertheless, promote the progression of atherosclerotic lesions to a more advanced stage.
66

The Role of the SPRY domain in the SPRY domain-containing SOCS box proteins

Masters, Seth L. Unknown Date (has links) (PDF)
There are four mammalian SSB proteins (SSB-1 to -4), and these are characterized by a C-terminal SOCS box and central SPRY domain. The C-terminal SOCS box was first observed in proteins that were found to act as Suppressors of Cytokine Signalling and function by virtue of their SH2 domain. Other families containing the SOCS box motif were defined by the domains N-terminal to this, such as the ASBs (Ankyrin repeats), WSBs (WD40 repeats) and of course the SSBs (SPRY domains). This thesis describes a very broad investigation of the SSBs, a protein family about which very little was known. To begin with, functional investigation into the evolution of this family and analysis of murine SSB expression patterns was performed. This highlighted that the family was highly conserved and had differential expression in the mouse, suggestive of important, unique functional roles for the individual family members. The majority of work in the thesis then proceeds in three directions; (i) analysis of the SSB proteins in vivo, with genetic deletion of SSB-2 in the mouse, (ii) biochemically, with analysis of SSB binding partners, and (iii) structurally, with functional analysis of the structure of SSB-2.
67

Inactivation of the Integrin-Linked Kinase in osteoblasts increases mineralization

El-Hoss, Jad. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Human Genetics. Title from title page of PDF (viewed 2008/07/30). Includes bibliographical references.
68

Identification of pharmacological and molecular mechanisms involved in nicotine withdrawal

Jackson, Kia Janelle, January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2008. / Prepared for: Dept. of Pharmacology & Toxicology. Title from title-page of electronic thesis. Bibliography: leaves 187-206.
69

Studying physiological functions of APP using mice models

Li, Hongmei January 2008 (has links)
Dissertation (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2008. / Vita. Bibliography: p. 97-121.
70

Functional characterization of peroxisomes and pathological consequences of peroxisomal dysfunction in the lung /

Karnati, Srikanth. January 2009 (has links)
Zugl.: Giessen, University, Diss., 2009.

Page generated in 0.022 seconds