• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GENERATIVE MODELS WITH MARGINAL CONSTRAINTS

Bingjing Tang (16380291) 16 June 2023 (has links)
<p> Generative models form powerful tools for learning data distributions and simulating new samples. Recent years have seen significant advances in the flexibility and applicability of such models, with Bayesian approaches like nonparametric Bayesian models and deep neural network models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) finding use in a wide range of domains. However, the black-box nature of these models means that they are often hard to interpret, and they often come with modeling implications that are inconsistent with side knowledge resulting from domain knowledge. This thesis studies situations where the modeler has side knowledge represented as probability distributions on functionals of the objects being modeled, and we study methods to incorporate this particular kind of side knowledge into flexible generative models. This dissertation covers three main parts. </p> <p><br></p> <p>The first part focuses on incorporating a special case of the aforementioned side knowledge into flexible nonparametric Bayesian models. Many times, practitioners have additional distributional information about a subset of the coordinates of the observations being modeled. The flexibility of nonparametric Bayesian models usually implies incompatibility with this side information. Such inconsistency triggers the necessity of developing methods to incorporate this side knowledge into flexible nonparametric Bayesian models. We design a specialized generative process to build in this side knowledge and propose a novel sigmoid Gaussian process conditional model. We also develop a corresponding posterior sampling method based on data augmentation to overcome a doubly intractable problem. We illustrate the efficacy of our proposed constrained nonparametric Bayesian model in a variety of real-world scenarios including modeling environmental and earthquake data. </p> <p><br></p> <p>The second part of the dissertation discusses neural network approaches to satisfying the said general side knowledge. Further, the generative models considered in this part broaden into black-box models. We formulate this side knowledge incorporation problem as a constrained divergence minimization problem and propose two scalable neural network approaches as its solution. We demonstrate their practicality using various synthetic and real examples. </p> <p><br></p> <p> The third part of the dissertation concentrates on a specific generative model of individual pixels of the fMRI data constructed from a latent group image. Usually there is two-fold side knowledge about the latent group image: spatial structure and partial activation zones. The former can be captured by modeling the prior for the group image with Markov random fields. The latter, which is often obtained from previous related studies, is left for future research. We propose a novel Bayesian model with Markov random fields and aim to estimate the maximum a posteriori for the group image. We also derive a variational Bayes algorithm to overcome local optima in the optimization.</p>

Page generated in 0.0864 seconds