• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Can Knowledge Rich Sentences Help Language Models To Solve Common Sense Reasoning Problems?

January 2019 (has links)
abstract: Significance of real-world knowledge for Natural Language Understanding(NLU) is well-known for decades. With advancements in technology, challenging tasks like question-answering, text-summarizing, and machine translation are made possible with continuous efforts in the field of Natural Language Processing(NLP). Yet, knowledge integration to answer common sense questions is still a daunting task. Logical reasoning has been a resort for many of the problems in NLP and has achieved considerable results in the field, but it is difficult to resolve the ambiguities in a natural language. Co-reference resolution is one of the problems where ambiguity arises due to the semantics of the sentence. Another such problem is the cause and result statements which require causal commonsense reasoning to resolve the ambiguity. Modeling these type of problems is not a simple task with rules or logic. State-of-the-art systems addressing these problems use a trained neural network model, which claims to have overall knowledge from a huge trained corpus. These systems answer the questions by using the knowledge embedded in their trained language model. Although the language models embed the knowledge from the data, they use occurrences of words and frequency of co-existing words to solve the prevailing ambiguity. This limits the performance of language models to solve the problems in common-sense reasoning task as it generalizes the concept rather than trying to answer the problem specific to its context. For example, "The painting in Mark's living room shows an oak tree. It is to the right of a house", is a co-reference resolution problem which requires knowledge. Language models can resolve whether "it" refers to "painting" or "tree", since "house" and "tree" are two common co-occurring words so the models can resolve "tree" to be the co-reference. On the other hand, "The large ball crashed right through the table. Because it was made of Styrofoam ." to resolve for "it" which can be either "table" or "ball", is difficult for a language model as it requires more information about the problem. In this work, I have built an end-to-end framework, which uses the automatically extracted knowledge based on the problem. This knowledge is augmented with the language models using an explicit reasoning module to resolve the ambiguity. This system is built to improve the accuracy of the language models based approaches for commonsense reasoning. This system has proved to achieve the state of the art accuracy on the Winograd Schema Challenge. / Dissertation/Thesis / Masters Thesis Computer Science 2019
2

Towards Understanding Natural Language: Semantic Parsing, Commonsense Knowledge Acquisition, Reasoning Framework and Applications

January 2019 (has links)
abstract: Reasoning with commonsense knowledge is an integral component of human behavior. It is due to this capability that people know that a weak person may not be able to lift someone. It has been a long standing goal of the Artificial Intelligence community to simulate such commonsense reasoning abilities in machines. Over the years, many advances have been made and various challenges have been proposed to test their abilities. The Winograd Schema Challenge (WSC) is one such Natural Language Understanding (NLU) task which was also proposed as an alternative to the Turing Test. It is made up of textual question answering problems which require resolution of a pronoun to its correct antecedent. In this thesis, two approaches of developing NLU systems to solve the Winograd Schema Challenge are demonstrated. To this end, a semantic parser is presented, various kinds of commonsense knowledge are identified, techniques to extract commonsense knowledge are developed and two commonsense reasoning algorithms are presented. The usefulness of the developed tools and techniques is shown by applying them to solve the challenge. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2019

Page generated in 0.0476 seconds