• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automorphism Groups And Chern Bounds of Fibrations

Christopher E Creighton (9189347) 30 July 2020 (has links)
In this thesis, I study two problems. First, I generalize a result by H-Y Chen to show that if $X$ is a smooth variety of general type and irregularity $q\geq 1$ that embeds into its Albanese variety as a smooth variety $Y$ of general type with codimension one or two, then $|Aut(X)|\leq |Aut(F_{min})||Aut(Y)|$ where $F_{min}$ is the minimal model of a general fiber. Then I describe a special type of fibration called a K-Fibration as a generalization to Kodaira Fibrations where we can compute its Chern numbers in dimensions 2 and 3. K-Fibrations act as an initial step in constructing examples of varieties that satisfy the generalization with the goal of computing their automorphism group explicitly.

Page generated in 0.0699 seconds