Spelling suggestions: "subject:"kodförståelse"" "subject:"kodförståelsen""
1 |
Clean Code vs Dirty Code : Ett fältexperiment för att förklara hur Clean Code påverkar kodförståelse / Clean Code vs Dirty CodeHagman, Tobias January 2015 (has links)
Stora och komplexa kodbaser med bristfällig kodförståelse är ett problem som blir allt vanligare bland företag idag. Bristfällig kodförståelse resulterar i längre tidsåtgång vid underhåll och modifiering av koden, vilket för ett företag leder till ökade kostnader. Clean Code anses enligt somliga vara lösningen på detta problem. Clean Code är en samling riktlinjer och principer för hur man skriver kod som är enkel att förstå och underhålla. Ett kunskapsglapp identifierades vad gäller empirisk data som undersöker Clean Codes påverkan på kodförståelse. Studiens frågeställning var: Hur påverkas förståelsen vid modifiering av kod som är refaktoriserad enligt Clean Code principerna för namngivning och att skriva funktioner? För att undersöka hur Clean Code påverkar kodförståelsen utfördes ett fältexperiment tillsammans med företaget CGM Lab Scandinavia i Borlänge, där data om tidsåtgång och upplevd förståelse hos testdeltagare samlades in och analyserades. Studiens resultat visar ingen tydlig förbättring eller försämring av kodförståelsen då endast den upplevda kodförståelsen verkar påverkas. Alla testdeltagare föredrar Clean Code framför Dirty Code även om tidsåtgången inte påverkas. Detta leder fram till slutsatsen att Clean Codes effekter kanske inte är omedelbara då utvecklare inte hunnit anpassa sig till Clean Code, och därför inte kan utnyttja det till fullo. Studien ger en fingervisning om Clean Codes potential att förbättra kodförståelsen. / Summary: Big and complex codebases with inadequate understandability, is a problem which is becoming more common among companies today. Inadequate understandability leads to bigger time requirements when maintaining code, which means increased costs for a company. Clean Code is according to some people the solution to this problem. Clean Code is a collection of guidelines and principles for how to write code which is easy to understand and maintain. A gap of knowledge was identified, as there is little empirical data that investigates how Clean Code affects understandability. This lead to the following the question: How is the understandability affected when modifying source code which has been refactored according to the Clean Code principles regarding names and functions? In order to investigate how Clean Code affects understandability, a field experiment was conducted in collaboration with the company CGM Lab Scandinavia in Borlänge. In the field experiment data in the form of time and experienced understandability was collected and analyzed.The result of this study doesn’t show any clear signs of immediate improvements or worsening when it comes to understandability. This is because even though all participants prefer Clean Code, this doesn’t show in the measured time of the experiment. This leads me to the conclusion that the effects of Clean Code aren’t immediate, since developers hasn’t been able to adapt to Clean Code, and therefore are not able to utilize its benefits properly. This study gives a hint of the potential Clean Code has to improve understandability
|
Page generated in 0.0371 seconds