Spelling suggestions: "subject:"kohlenstoffelektroden"" "subject:"kohlenstoffelektrode""
1 |
Functionalized (nano) Carbon-based electrochemical SensorsGrosser, Tobias 15 November 2024 (has links)
Kohlenstoff basierte Elektroden sind sehr vielseitig und bieten einen großen Anwendungsbereich. Diese Arbeit ist fokussiert auf die Entwicklung, Modifizierung und Anwendung von Sensoren, die auf siebgedruckten Kohlenstoffelektroden (C-SPEs), sowie Graphen basieren.
Im ersten Abschnitt der Arbeit wurden C-SPEs als Grundlage genutzt, um einen elektrochemischen Sensor für D-Laktat zu entwickeln, wobei D-Laktat ein potentieller Biomarker ist, um bakterielle Kontaminationen in physiologischen zu erkennen. Der entwickelte Sensor erreichte in pH-gepufferten Testsystemen eine Nachweisgrenze von 500 nM. Die Empfindlichkeit von D-Laktat in mit D-Laktat versetzten verdünnten Synovialflüssigkeitsproben wurde nur auf die Hälfte reduziert, was die Fähigkeit des Sensors beweist, erhöhte D-Laktat-Werte auch in einer komplexen physiologischen Matrix nachzuweisen.
Im zweiten Teil wurde Graphen auf ein Silizium/Siliziumdioxid Träger mit vorgefertigten Platinelektroden transferiert. Anschließend wurde es einem Stickstoffplasma ausgesetzt, was zu einer tiefgreifenden Veränderung seiner elektrochemischen Eigenschaften führte. Oberflächenanalysen zeigten, dass das Graphengitter mit Stickstoffatomen dotiert und mit stickstoffhaltigen funktionellen Gruppen auf der Graphenoberfläche modifiziert wurde, welches die elektrokatalytische Aktivität der untersuchten Redoxspezies veränderten.
Im letzten Teil dieser Arbeit wird eine neue Klasse hybrider 2D-Elektroden vorgestellt, bei denen nanoskalige Quecksilberpartikel zwischen zwei Graphen-Monoschichten eingeschlossen wurden. Dadurch erhält Graphen vorteilhafte Eigenschaften von Quecksilber, wie unter anderem ein hohes Überpotential für die Wasserstoffentwicklung und eine erhöhte Empfindlichkeit gegenüber Schwermetallionen wie Cd2+ und Pb2+. Das Ausgasen von Quecksilber durch die obere Schicht wurde vollständig verhindert, was zu einer stabilen quecksilberähnlichen Elektrode führt, die jedoch eine kohlenstoffhaltige Grenzfläche aufweist. / The use of carbon-based electrochemical sensors is highly versatile and applicable across a wide range of scenarios. This thesis is focused on the development, modification and application of sensors based on screen-printed carbon electrodes (C-SPEs) as well as graphene.
In the first study, C-SPEs were used as a basis to develop an electrochemical sensor for D-lactate, which is a potent biomarker to detect bacterial contaminations in physiological samples. The D-lactate sensor achieved a detection limit of about 500 nM D-lactate in pH buffered test systems. The sensitivity in spiked diluted synovial fluid samples was only halved, which proves its capability to detect elevated D-lactate levels in the complex physiological matrix.
In the second part, graphene was transferred onto a silicon/silicon oxide substrate with pre-patterned Pt-electrodes. Afterwards, it was subjected to nitrogen plasma, resulting in a profound alteration of its electrochemical properties. Surface analysis led to the conclusion, that the graphene lattice was doped with nitrogen atoms as well as nitrogen containing functional groups on the graphene surface, which altered graphene’s electrocatalytic activity towards the investigated redox species.
In the final study, a new class of hybrid 2D electrodes is presented, where nanosized mercury particles are incorporated between two graphene monolayers. Thereby, graphene acquires advantageous properties from mercury, including a high overpotential for hydrogen evolution and increased sensitivity to heavy metal ions such as Cd2+ and Pb2+. The outgassing of mercury is entirely impeded by the top layer, resulting in a stable mercury-like electrode but featuring a carbonaceous interface.
|
Page generated in 0.0473 seconds