Spelling suggestions: "subject:"kohonen network"" "subject:"rohonen network""
1 |
Rozpoznání dopravních značek využitím neuronové sítě / Traffic sign recognition with using of neural networksZámečník, Dušan January 2009 (has links)
This paper deals with traffic signs recognition. Red color area is obtained by thresholding in HSV color model. Selected radiometric deskriptors, Hough transform deskriptors and neural networs are used to classification. In conclusion has been designed complex decision algorithm.
|
2 |
Adaptace parametrů ve fuzzy systémech / Adaptation of parameters in fuzzy systemsFic, Miloslav January 2015 (has links)
This Master’s thesis deals with adaptation of fuzzy system parameters with main aim on artificial neural network. Current knowledge of methods connecting fuzzy systems and artificial neural networks is discussed in the search part of this work. The search in Student’s works is discussed either. Chapter focused on methods application deals with classifying ability verification of the chosen fuzzy-neural network with Kohonen learning algorithm. Later the model of fuzzy system with parameters adaptation based on fuzzyneural network with Kohonen learning algorithm is shown.
|
3 |
Automobilių registracijos numerių atpažinimo tyrimas / Analysis of car number plate recognitionLaptik, Raimond 17 June 2005 (has links)
In the presented master paper: Analysis of car number plate recognition, optical character recognition (OCR), OCR software, OCR devices and systems are reviewed. Image processing operators and artificial neural networks are presented. Analysis and application of image processing operators for detection of number plate is done. Experimental results of estimation of Kohonen and multilayer feedforward artificial neural network learning parameters are presented. Number plate recognition is performed by the use of multilayer feedforward artificial neural network. Model of number plate recognition system is created. Number plate recognition software works in Microsoft© Windows™ operating system. Software is written with C++ language. Experimental results of system model operation are presented.
|
4 |
Využití neuronových sítí v klasifikaci srdečních onemocnění / Use of neural networks in classification of heart diseasesSkřížala, Martin January 2008 (has links)
This thesis discusses the design and the utilization of the artificial neural networks as ECG classifiers and the detectors of heart diseases in ECG signal especially myocardial ischaemia. The changes of ST-T complexes are the important indicator of ischaemia in ECG signal. Different types of ischaemia are expressed particularly by depression or elevation of ST segments and changes of T wave. The first part of this thesis is orientated towards the theoretical knowledges and describes changes in the ECG signal rising close to different types of ischaemia. The second part deals with to the ECG signal pre-processing for the classification by neural network, filtration, QRS detection, ST-T detection, principal component analysis. In the last part there is described design of detector of myocardial ischaemia based on artificial neural networks with utilisation of two types of neural networks back – propagation and self-organizing map and the results of used algorithms. The appendix contains detailed description of each neural networks, description of the programme for classification of ECG signals by ANN and description of functions of programme. The programme was developed in Matlab R2007b.
|
5 |
Využití neuronových sítí pro klasifikaci alternací vlny T / Application of neural networks for classification of T-wave alternationsProcházka, Tomáš January 2008 (has links)
This thesis deals with analysis of T-wave Alternans (TWA), periodical changes of T wave in ECG signal. Presence of these alternans may predict higher risk of sudden cardiac death. From the several possible ways of TWA classification, the training algorithms of self organizing maps are used in this thesis. Result of the thesis is a program, which in the first step detects QRS complexes in the signal. Then, in the next step, gained reference points are used for T-waves detection. Detected waves are represented by a vector of significant points, which is used as an input for artificial neural network. Final output of the program is a decision about presence of TWA in the signal and its rate.
|
Page generated in 0.0365 seconds