• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discourse-givenness of noun phrases : theoretical and computational models

Ritz, Julia January 2013 (has links)
This thesis gives formal definitions of discourse-givenness, coreference and reference, and reports on experiments with computational models of discourse-givenness of noun phrases for English and German. Definitions are based on Bach's (1987) work on reference, Kibble and van Deemter's (2000) work on coreference, and Kamp and Reyle's Discourse Representation Theory (1993). For the experiments, the following corpora with coreference annotation were used: MUC-7, OntoNotes and ARRAU for Englisch, and TueBa-D/Z for German. As for classification algorithms, they cover J48 decision trees, the rule based learner Ripper, and linear support vector machines. New features are suggested, representing the noun phrase's specificity as well as its context, which lead to a significant improvement of classification quality. / Die vorliegende Arbeit gibt formale Definitionen der Konzepte Diskursgegebenheit, Koreferenz und Referenz. Zudem wird über Experimente berichtet, Nominalphrasen im Deutschen und Englischen hinsichtlich ihrer Diskursgegebenheit zu klassifizieren. Die Definitionen basieren auf Arbeiten von Bach (1987) zu Referenz, Kibble und van Deemter (2000) zu Koreferenz und der Diskursrepräsentationstheorie (Kamp und Reyle, 1993). In den Experimenten wurden die koreferenzannotierten Korpora MUC-7, OntoNotes und ARRAU (Englisch) und TüBa-D/Z (Deutsch) verwendet. Sie umfassen die Klassifikationsalgorithmen J48 (Entscheidungsbäume), Ripper (regelbasiertes Lernen) und lineare Support Vector Machines. Mehrere neue Klassifikationsmerkmale werden vorgeschlagen, die die Spezifizität der Nominalphrase messen, sowie ihren Kontext abbilden. Mit Hilfe dieser Merkmale kann eine signifikante Verbesserung der Klassifikation erreicht werden.

Page generated in 0.0325 seconds