• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

Li, Dalong 30 November 2006 (has links)
In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.

Page generated in 0.1023 seconds