• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prédiction de la réponse aux traitements in vivo de tumeurs basées sur le profil moléculaire des tumeurs par apprentissage automatique / Prediction of tumour in vivo response to treatments using its molecular profiles via machine learning

Nguyen, Cam Linh 05 June 2019 (has links)
Ces dernières années, les thérapies ciblées pour le traitement du cancer, ont été introduites. Cependant, un médicament fonctionnant chez un patient peut ne pas fonctionner chez un autre. Pour éviter l'administration de traitements inefficaces, des méthodes capables de prédire les patients qui répondront à un médicament donné doivent être mises au point.Il n'est actuellement pas possible de prédire l'efficacité de la grande majorité des médicaments anticancéreux. L’apprentissage automatique (AA) est un outil particulièrement prometteur pour la médecine personnalisée. L’AA est un champ d’étude de l'intelligence artificielle ; elle concerne la mise au point et l'application d'algorithmes informatiques qui s'améliorent avec l'expérience. Dans ce cas, l'algorithme d’AA apprendra à faire la distinction entre les tumeurs sensibles et résistantes en fonction de plusieurs gènes au lieu d'un seul gène. Cette étude se concentre sur l'application de différentes approches de l’AA pour prédire la réponse à des médicaments anticancéreux des tumeurs et générer des modèles précis, biologiquement pertinentes et faciles à expliquer. / In recent years, targeted drugs for the treatment of cancer have been introduced. However, a drug that works in one patient may not work in another patient. To avoid the administration of ineffective treatments, methods that predict which patients will respond to a particular drug must be developed.Unfortunately, it is not currently possible to predict the effectiveness of most anticancer drugs. Machine learning (ML) is a particularly promising approach for personalized medicine. ML is a form of artificial intelligence; it concerns the development and application of computer algorithms that improve with experience. In this case, ML algorithm will learn to distinguish between sensitive and non-sensitive tumours based on multiple genes instead of a single gene. Our study focuses on applying different approaches of ML to predict drug response of tumours to anticancer drugs and generate models which have good accuracy, as well as are biologically relevant and easy to be explained.

Page generated in 0.096 seconds