Spelling suggestions: "subject:"L'analyse dde composants indépendantes"" "subject:"L'analyse dde composants indépendante""
1 |
Trouver les gènes manquants dans des réseaux géniquesWang, Woei fuh 13 December 2011 (has links) (PDF)
Le développement de techniques à haut débit fournit de nombreuses données sur le fonctionnement de réseaux de régulation. Il devient donc de plus en plus important de développer des techniques qui permettent de déduire la topologie et le fonctionnement des réseaux de régulation à partir des données expérimentales. La plupart des études dans ce domaine se focalisent sur la reconstruction de l'architecture locale du réseau de régulation et la détermination des paramètres qui relient les composants du réseau. Cependant, les réseaux biologiques ne sont jamais entièrement connus. L'absence d'un noeud important dans le réseau de régulation peut facilement conduire à de mauvaises prédictions de la structure du réseau ou des paramètres d'interactions. Dans cette thèse, nous proposons une méthode qui permet d'inférer l'existence, le profile d'expression et la connexion au reste du réseau d'un gène (ou de gènes) manquant. Pour résoudre ce problème difficile, nous devons simplifier la description du réseau de régulation. Nous faisons l'hypothèse communément acceptée que les interactions dans le réseau sont décrites par des fonctions de Hill. Nous approximons ces fonctions trop compliquées par des fonctions de puissance et nous montrons que cette simplification préserve la dynamique du réseau. En prenant le logarithme du système d'équations nous convertissons le système non-linéaire en un système linéaire. De nombreux outils sont disponibles pour analyser des systèmes linéaires. Nous utilisons l'analyse factorielle (FA) et l'analyse de composants indépendants (ICA) pour extraire le profil d'expression du gène inconnu à partir des profils d'expression des parties connues du réseau de régulation. Après avoir estimé le pattern d'expression du gène inconnu, nous explorons les différentes possibilités de connecter ce gène au reste du réseau. Une recherche exhaustive est trop coûteuse pour des grands réseaux de régulation. Nos proposons donc un algorithme de réduction de l'espace de recherche pour diminuer le nombre de calculs nécessaires. L'algorithme proposé est robuste au bruit expérimental et le profil d'expression du gène inconnu est retrouvé avec une probabilité de 80% dans des réseaux de petite taille et avec une probabilité de 60% pour des grands réseaux. FA est plus efficace que ICA pour extraire le profile du gène inconnu. L'algorithme est finalement appliqué à un réseau biologique réel: le réseau de régulation de la transcription du gène acs d'Escherichia coli. Nous prédisons qu'il y a un gène manquant dans ce réseau et les deux méthodes d'extraction du signal trouvent un profil d'expression très similaire pour le gène inconnu. De plus, ce profil d'expression est identique dans trois contextes expérimentaux différents : la souche sauvage, la souche dont l'adénylate cyclase a été délété et cette même souche complémentée par des l'AMPc ajouté au milieu de croissance. Puisque le profil d'expression du gène inconnu reste le mŘme dans les trois souches nous pouvons conclure que ce gène est indépendant de l'AMPc. Les deux méthodes d'extraction du profil d'expression prédisent deux structures différentes du réseau complet. FA prédit que le gène manquant contrôle l'expression de fis, tandis que ICA prédit que le gène inconnu contrôle d'expression de crp.
|
Page generated in 0.1258 seconds