Spelling suggestions: "subject:"L-/cérine"" "subject:"L-/entérine""
1 |
Altération métabolique et déficit synaptique dans la maladie d'Alzheimer : rôle de la PHGDH astrocytaire. / Astrocytic 3-phosphoglycerate dehydrogenase links energy metabolism and LTP deficits in a mouse model of Alzheimer's DiseaseLe Douce, Juliette 14 December 2015 (has links)
Les patients atteints de la MA souffrent d'altérations métaboliques et synaptiques précoces. Via la glycolyse et le cycle de Krebs, le métabolisme du glucose permet la production d'ATP, essentielle à l'activité et la plasticité synaptique. Contrairement aux neurones, les astrocytes utilisent majoritairement la glycolyse pour métaboliser le glucose. En plus de la production d'énergie, la glycolyse fournit les précurseurs indispensables à la synthèse de biomolécules comme la L-sérine. Cet acide aminé est produit à partir du glucose par la déviation du 3-phosphoglycérate (3PG), un intermédiaire glycolytique, via l'enzyme 3-phosphoglycérate déshydrogénase (PHGDH), exprimée spécifiquement dans les astrocytes. La L-sérine est le précurseur de la D-sérine, le principal co-agoniste des NMDAR nécessaires à l'activité et la plasticité synaptique.Nous avons utilisé des souris 3xTg-AD, un modèle développant une MA progressive, afin d'étudier si une altération de la production de L-/D-sérine pouvait contribuer à des déficits synaptiques.A 6 mois, lorsque les souris 3xTg-AD ne possèdent pas encore de plaques amyloïdes dans l'hippocampe, nous avons observé in vivo une diminution du métabolisme du glucose, de la concentration de L-sérine et des déficits synaptiques (LTP). L'expression locale de la PHGDH est aussi altérée. L'application de D-sérine restaure complètement les déficits de LTP chez les souris 3xTg-AD.Ces données supportent l'hypothèse qu'un déficit de production de L-sérine par les astrocytes médié par une diminution du flux glycolytique serait responsable de l'altération synaptique observée dans l'hippocampe des souris 3xTg-AD. / An early alteration of both cerebral glucose metabolism and synaptic activity has been consistently described in Alzheimer's disease (AD) patients. Metabolism of glucose via glycolysis and the citric acid cycle produces ATP that is essential for synaptic activity and plasticity. In the brain, glucose is predominantly processed glycolytically into astrocytes and not by neurons. Beyond ATP production, a major function of aerobic glycolysis is to provide precursors to support macromolecular synthesis. L-serine, generated from glucose through diversion of the glycolytic intermediate 3-phosphoglycerate (3PG) into the phosphorylated pathway, is only produced in astrocytes by 3-phosphoglycerate dehydrogenase (PHGDH), selectively expressed in those glial cells. L-serine is the precursor of D-serine, the main co-agonist of synaptic NMDAR, required for synaptic activity and plasticity. We used 3xTg-AD mice, which develop a progressive pathology, to investigate whether a defective production of L-/D-serine contributes to early synaptic deficits in AD. We found that 3xTg-AD mice display early in vivo alterations of glucose metabolism, synaptic deficits (LTP) in the CA1 region and also lower concentration of L-serine. The local expression of PHGDH was significantly altered. Exogenous D-serine completely rescued LTP in 3xTg-AD mice. These data support the hypothesis that a deficit of L-serine synthesis by astrocytes likely mediated by a decreased glycolytic flux may be responsible for the synaptic alteration mediated by NMDAR in the hippocampus of 3xTg-AD mice.
|
Page generated in 0.0342 seconds