1 |
Investigating the effect of PIP4K2a overexpression in insulin signalling in L6 myotubesAl-Abri, Abdulrahim January 2018 (has links)
Insulin signalling is an essential process in humans by which the level of plasma glucose is maintained within the physiologically healthy range. Insulin activates the phosphoinositide 3 kinase (PI3K) signalling pathway that generates the phospholipid messenger PtdIns(3,4,5)P3, which in turn enhances the activity of two important proteins, AKT and Rac1. This then leads to increase the presence of the glucose transporter 4 (GLUT4) at the plasma membrane that enhances the intake of glucose, particularly in skeletal muscle cells and adipocytes. Insulin signalling also triggers interconversion of several other phosphoinositides (PIs) which play pivotal roles in different steps of glucose regulation. PtdIns5P is an important PI that is robustly increased after insulin treatment in the skeletal muscle cell line, L6 myotubes. Many of PtdIns5P`s functions are not fully understood. To gain more knowledge of the role of PtdIns5P in insulin signalling in muscle cells, the PtdIns5P kinase phosphatidylinositol-5-phosphate 4-kinase a (PIP4K2a) was over-expressed in L6 myotubes as a way of removing PtdIns5P, and the consequences in insulin signalling were studied. Although PtdIns5P is converted by PIP4K2a to PtdIns(4,5)P2 which is a precursor of the potent PI PtdIns(3,4,5)P3, previous studies revealed that the increase in PtdIns(3,4,5)P3 induced by insulin in control cells is diminished in cells overexpressing PIP4K2a, for unknown reasons. Additionally, although the phosphorylation of the serine/threonine protein kinase AKT was not affected in these L6 cells, glucose uptake was attenuated. The current study investigates the possible causes of attenuating glucose uptake in PIP4K overexpressing myotubes by examining the small GTPase Rac1 which plays an important role in the cytoskeleton re-arrangement that is necessary for GLUT4 translocation. Furthermore, the possible roles of PI phosphatases that may cause the disturbance on the levels of PIs in response to insulin were evaluated. Additionally, the potential role of PtdIns5P in Rac1 activation in L6 myotubes was further investigated by delivering synthetic PtdIns5P using a carrier-based delivery approach. The results showed that the attenuation of glucose uptake documented in previous studies occurred as a result of a defect in the process of translocating GLUT4 from intracellular storage to the plasma membrane. Rac1 activity was significantly reduced in cells expressing PIP4K2a. Quantifying the level of PIs suggested that PIP4K2a expression increases the removal of PtdIns(3,4,5)P3 by the PI 5-phosphatase, SKIP. Silencing the expression of SKIP by siRNA restored the level of PtdIns(3,4,5)P3 but Rac1 activity and the attenuation GLUT4 translocation were not rescued possibly as a result of removing PtdIns5P by PIP4K2a. On the other hand, exogenous delivery of PtdIns5P in L6 myotubes activates both Rac1 and GLUT4 translocation in the absence of insulin. However, activating GLUT4 translocation by the exogenous PtdIns5P requires PI3K activity since redistribution of GLUT4 to the plasma membrane is inhibited by the PI3K inhibitor, wortmannin. Removing PtdIns5P reduces Rac1 activity and stimulates SKIP that inhibits PtdIns(3,4,5)P3 increase which attenuates GLUT4 translocation and hence glucose uptake. These results emphasise the critical role played by PtdIns5P which seems to serve as a regulator of insulin signalling, both directly and/or by regulating other enzymes involved in the metabolism of PIs.
|
2 |
The influence of antioxidants on thrombotic risk factors in healthy populationSingh, Indu, indu.singh@rmit.edu.au January 2008 (has links)
Oxidative damage has been suggested to play a key role in the pathogenesis of atherosclerosis and other cardiovascular disease. Increased free radical production induced by oxidative stress can oxidise low density lipoproteins, activates platelets, induces endothelial dysfunction and disturbs glucose transport by consuming endogenous antioxidants. Using a combination, of in vitro and in vivo experimental models, the primary aims of the studies undertaken for this thesis were to examine whether different antioxidants could negate risk factors leading to thrombosis, atherosclerosis and other cardiovascular diseases. The studies utilised the mechanisms involved in platelet activity and glucose uptake by skeletal muscle myotubes. The first study determined if olive leaf extract would attenuate platelet activity in healthy human subjects. Blood samples (n=11) were treated with five different concentrations of extract of Olea europaea L. leaves ranging from 5.4£gg/mL to 54£gg/mL. A significant reduction in platelet activity (pless than0.001) and ATP release from platelets (p=0.02) was observed with 54£gg/mL olive leaf extract. The next crossover study compared the effect of exercise and antioxidant supplementation on platelet function between trained and sedentary individuals. An acute bout of 1 hour exercise (sub maximal cycling at 70% of VO2max) was used to induce oxidative stress in 8 trained and 8 sedentary male subjects, before and after one week supplementation with 236 mg/day of cocoa polyphenols. Baseline platelet count and ATP release increased significantly (pless than0.05) after exercise in all subjects. Baseline platelet numbers in the trained were higher than in the sedentary (235¡Ó37 vs. 208¡Ó34 x109/L, p less than 0.05), whereas platelet activation in trained subjects was lower than sedentary individuals (51¡Ó6 vs. 59¡Ó5%, p less than0.05). Seven days of cocoa polyphenol supplementation did not change platelet activity compared to the placebo group. The third study determined the effect of 5 weeks of either 100mg/day £^-Tocopherol (n=14), 200mg/d £^-Tocopherol (n=13) or placebo (n=12) on platelet function, lipid profile and the inflammatory marker C-reactive protein. Blood £^-tocopherol concentrations increased significantly (pless than0.05) relative to dose. Both doses attenuated platelet activation (pless than0.05). LDL cholesterol, platelet aggregation and mean platelet volume were decreased by 100mg/d £^-tocopherol (all pless than0.05). The final study determined the effect of glucose oxidase induced oxidative stress and £^-tocopherol treatment on glucose transport and insulin signalling in cultured rat L6 muscle cells. One hour treatment with 100mU/mL glucose oxidase significantly decreased glucose uptake both with and without 100nM insulin stimulation (pless than0.05). Pre-treatment with 100ÝM and 200ÝM £^-tocopherol partially protected cells from the effect of glucose oxidase, whereas 200ÝM £^-tocopherol restored both basal and insulin stimulated glucose transport to control levels. Glucose oxidase-induced oxidative stress did not impair basal or insulin stimulated phosphorylation of Akt or AS160, but 200ÝM £^-tocopherol improved insulin-stimulated phosphorylation of these proteins. In summary, the results from the studies undertaken for this thesis provide evidence that antioxidant supplementation maintains normal platelet function, exerts a positive effect on blood lipid profile and improves glucose uptake in normal healthy asymptomatic population as well as under conditions of induced oxidative stress. Antioxidants including foods rich in cocoa, olive and gamma tocopherol have the potential to combat oxidative stress induced risk factors leading to cardiovascular diseases.
|
Page generated in 0.037 seconds