• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 90
  • 56
  • 55
  • 49
  • 17
  • 12
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 788
  • 115
  • 103
  • 71
  • 58
  • 56
  • 56
  • 54
  • 53
  • 52
  • 50
  • 45
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Structure Of Sink Flow Boundary Layers

Ajit, Dixit Shivsai 10 1900 (has links)
The work reported in this thesis is an experimental and theoretical investigation of the so-called sink flow boundary layers. These are two-dimensional (in the mean), favourable-pressure-gradient (FPG) boundary layer flows where the boundary layers experience stream-wise acceleration inside a two-dimensional convergent channel with smooth and plane walls. The boundary layers studied are mainly turbulent with few cases that may be identified as reverse-transitional. The sink flow turbulent boundary layers (TBLs) are the only smooth-walled layers that are in ‘perfect equilibrium’ or ‘exact self-preservation’ in the sense of Townsend (1976) and Rotta (1962). The present boundary layer experiments were conducted in an open-return low-speed wind tunnel. The sink flow conditions were established on the test-plate by using a contoured test-section ceiling for creating a convergent channel with smooth and plane walls. The strength of the streamwise FPG was varied by changing the freestream speed in the test-section. Few zero-pressure-gradient (ZPG) turbulent boundary layers were also measured in the same tunnel for which the contoured ceiling was replaced by a straight one. The velocity measurement techniques used include conventional Pitot-tubes for mean flow measurements and hotwire/crosswire probes for turbulence measurements. For measurement of skin friction in ZPG flows, Preston-tube was used while for the sink flows the so-called surface hotwire method was employed. Static pressures were measured on the test-surface using an alcohol-based projection manometer. Boundary layers were tripped at the beginning of the test-plate to ensure quick transition to turbulence. The mean velocity scaling in sink flow TBLs in the presence of strong FPG has been studied systematically, especially in view of the apparent pressure-gradient-dependence of the logarithmic laws reported in the literature (Spalart & Leonard, 1986; Nickels, 2004; Chauhan et al., 2007). The experimental study of sink flow TBLs carried out over a wide range of streamwise FPGs has shown that the mean velocity profiles (in inner coordinates) exhibit systematic departures from the universal logarithmic law as the pressure gradient parameter ∆p is varied. Even so, each of these profiles exhibits a logarithmic region, albeit non-universal, whose constants are functions of the pressure gradient. Systematic dependence of these constants on the pressure gradient parameter ∆p is observed. Moreover, the wake region is uniformly absent in all these profiles. In other words, each profile looks like a ‘pure wall-flow’, in the sense of Coles (1957), only if it is viewed in relation to its own non-universal logarithmic law. To support the experimental observation of the pressure-gradient-dependence of logarithmic laws in sink flow TBLs, a theory based on the method of matched asymptotic expansions has been applied to sink flow TBLs and this theory reveals a systematic dependence of inner and outer logarithmic laws on the pressure gradient parameter ∆p. This dependence is essentially a higher-order effect and therefore becomes significant only in the presence of relatively strong pressure gradients. Comparison of the theory with the experimental data demonstrates that the disappearance of the universal logarithmic law in strong FPG situations does not necessarily imply the absence of classical inner-outer overlap region. The overlap may still manifest itself as a logarithmic functional form with constants that are strongly influenced by the magnitude of the FPG. An immediate use of the non-universal log laws is towards the estimation skin friction in strong-pressure-gradient equilibrium and near-equilibrium TBL flows and this issue has been studied in some detail. It is shown that the conventional Clauser-chart method for estimation of skin friction (which gives fairly accurate results for ZPG or mild-pressure-gradient flows), originally proposed by Clauser (1954), can be modified to deal with the situations involving strong streamwise pressure gradients, provided that the equilibrium or near-equilibrium TBL under consideration is not very close to relaminarization or separation. In such cases, the overlap layer manifests itself in the form of non-universal logarithmic laws that are dependent on the local strength of the pressure gradient. Using these non-universal log laws in conjunction with the measured pressure distribution (necessary for obtaining the acceleration parameter K) and a measured mean velocity profile, it is possible to obtain the local skin friction coefficient to an accuracy which is typical of skin friction measurements. This modified Clauser-chart method (MCCM) employs a two-fold iterative procedure (one iteration on Cf and the other on ∆p) in contrast to the conventional method that involves only one iteration (on Cf alone). As a by-product of this MCCM, one obtains the local pressure gradient parameter ∆p and the slope 1/κ and intercept C of the non-universal log law for that profile. It is also demonstrated that the arm´MCCM is quite robust to the changes in the universal values of K´arman constant κ0 and intercept C0 for the ZPG turbulent boundary layer. Various aspects of the large-scale structure in turbulent and reverse-transitional sink flow boundary layers subjected to streamwise FPGs have also been investigated. The use of sink flow configuration allows systematic characterization of the large-scale structure with the strength of the FPG as a parameter where the characterization is not contaminated by the upstream history effects. The large-scale structure is identified by cross-correlating the wall-shear stress fluctuation with the streamwise velocity fluctuation. The structure orientation is found to be linear over a large wall-normal extent typically extending from y/δ of 0.1 to 0.6. Beyond y/δ =0.6, the correlation under consideration becomes very weak to allow any conclusive results. The average structure inclination angle αavg is found to decrease systematically with increase in the streamwise FPG. This result is important and has implications towards modeling of the near-wall region. Further it is found that the structure gets elongated considerably as the FPG is increased, i.e. the streamwise spatial extent of the structure increases. Taken together, it is observed that the structure becomes flatter and longer with the increase in FPG. Structural models are proposed for sink flow TBLs in the form of either the shape of individual hairpin vortices or the possible structural self-organization. These models are then discussed in the light of present experimental results. It is also shown that the process of relaminarization of a TBL by strong FPG may be better appreciated by appealing to these structural models. The validity of Taylor’s hypothesis for structure angle measurements in the present study has been established experimentally. This exercise is important since the flows under consideration are highly accelerated and sometimes even reverse-transitional. In most of the previous work on the validity of Taylor’s hypothesis, at least for the measurements similar to the present work, the emphasis has been on ZPG turbulent boundary layers. The present exercise is therefore crucial for accelerating flows. Possible reasons for the observed validity of Taylor’s hypothesis have also been identified − specifically it is seen that the condition ∆xp/L << 1 needs to be met for Taylor’s hypothesis to be valid in pressure gradient flows. Investigation of the structure convection velocity from the space-time correlations has revealed that the convection velocity of a typical structure in the present sink flow boundary layers is almost equal to the local mean velocity (more than 90%). This implies that the structure gets convected downstream almost along with the mean flow. Near-wall ‘active’ and ‘inactive’ motions in sink flow TBLs have been studied, discussed and compared with the corresponding results for ZPG turbulent boundary layers from five different aspects: (i) turbulent diffusion of TKE, (ii) quadrant statistics, (iii) profiles of the streamwise turbulence intensity, (iv) event correlation length scales obtained from conditional sampling on the instantaneous flux signal and (v) profiles of the Townsend parameter Tp =(−uv) /u2. Near-wall inactive motion is seen to be related to the strength of the large-eddy structure in the outer region of TBL flow. For APG flows the near-wall inactive motion is known to be more intense (Bradshaw, 1967b) than the ZPG flows, say at the same K´arman number δ+. This observation is consistent with a stronger large-eddy structure that may be perceived from the stronger wake component in the mean velocity variation and the larger mean entrainment in an APG turbulent boundary layer as compared to the ZPG flow at same δ+. In sink flow TBLs, the large-eddy structure is much weaker in comparison to the ZPG flow at same δ+ which is consistent with the absence of wake component in the mean velocity profile as well as the zero mean entrainment into the layer. A sink flow TBL represents, a state of weakest large-eddy structure and hence minimum intensity of inactive motion compared to any other equilibrium or near-equilibrium TBL flow having the same K´arman number δ+. All the analysis of the relevant experimental data seems to support this.
92

Steering in layers above the display surface

Kattinakere, Raghavendra Seetharamaiah 26 August 2008
Interaction techniques that use the layers above the display surface to extend the functionality of pen-based digitized surfaces continue to emerge. In such techniques, stylus movements are constrained by the bounds of a layer inside which the interaction is active, as well as constraints on the direction of movement within the layer. The problem addressed in this thesis is that designers currently have no model to predict movement time (MT) or quantify the difficulty, for movement (steering) in layers above the display surface constrained by thickness of the layer, its height above the display, and the width and length of the path. The problem has two main parts: first, how to model steering in layers, and second, how to visualize the layers to provide feedback for the steering task. The solution described is a model that predicts movement time and that quantifies the difficulty of steering through constrained and unconstrained paths in layers above the display surface. Through a series of experiments we validated the derivation and applicability of the proposed models. A predictive model is necessary because the model serves as the basis for design of interaction techniques in the design space; and predictive models can be used for quantitative evaluation of interaction techniques. The predictive models are important as they allow researchers to evaluate potential solutions independent of experimental conditions.<p>Addressing the second part of the problem, we describe four visualization designs using cursors. <p>We evaluated the effectiveness of the visualization by conducting a controlled experiment.
93

Steering in layers above the display surface

Kattinakere, Raghavendra Seetharamaiah 26 August 2008 (has links)
Interaction techniques that use the layers above the display surface to extend the functionality of pen-based digitized surfaces continue to emerge. In such techniques, stylus movements are constrained by the bounds of a layer inside which the interaction is active, as well as constraints on the direction of movement within the layer. The problem addressed in this thesis is that designers currently have no model to predict movement time (MT) or quantify the difficulty, for movement (steering) in layers above the display surface constrained by thickness of the layer, its height above the display, and the width and length of the path. The problem has two main parts: first, how to model steering in layers, and second, how to visualize the layers to provide feedback for the steering task. The solution described is a model that predicts movement time and that quantifies the difficulty of steering through constrained and unconstrained paths in layers above the display surface. Through a series of experiments we validated the derivation and applicability of the proposed models. A predictive model is necessary because the model serves as the basis for design of interaction techniques in the design space; and predictive models can be used for quantitative evaluation of interaction techniques. The predictive models are important as they allow researchers to evaluate potential solutions independent of experimental conditions.<p>Addressing the second part of the problem, we describe four visualization designs using cursors. <p>We evaluated the effectiveness of the visualization by conducting a controlled experiment.
94

The Study of Optoelectronic Characteristics and Charge Generation Mechanism in White Organic Light-Emitting Diode with Tandem Structure

Liu, Chia-Chun 24 August 2011 (has links)
Recently, tandem white organic light-emitting diodes are attracting a great deal of interest due to their potential illumination applications. A tandem structure is a mean two or more electroluminescence units that joined together through connecting units in series. So, we can make sense that the connecting unit has play an important role in this particular structure. In my paper research, the functions of connecting units are usually being considered with two aspects: charge transporting and charge generation. But, it was rarely discussed which function is the key point. Three devices were fabricated in this study : (¢¹) unit device, (¢º) tandem device 1 with connecting layers of Alq3:Li/MoO3 and (¢») tandem device 2 with connecting layers of Alq3:Li/HAT-CN. Base on this two connecting unit structure, we can get a quantifiable data from adopting, carrier transporting and carrier generation and figure out which function of connecting unit in tandem device is the main factor. The unit device has outstanding performance comparing to others fluorescence white OLED. It exhibits a maximum luminance of 49820 cd/m2 at 1755 mA/cm2, the power efficiency of 2.52 lm/W at 20 mA/cm2 and CIE (0.33, 0.33). But the power efficiency decreased to 2.07 lm/W at 20 mA/cm2 in tandem device 1. In order to improve device performance, we choose new material HAT-CN to replace to MoO3. From our result, the tandem device 2 have increase power efficiency from 2.07 lm/W to 2.24 lm/W at 20 mA/cm2, and the maximum luminance reach 71790 cd/m2 at 650 mA/cm2 with CIE(0.30, 0.39). We want to figure out why the power efficiency increased after using HAT-CN in tandem device. So we further designed and fabricated the hole only device, electron only device and capacitance device to figure out the charge transporting and charge generation behavior between these two connecting unit constructed based on Alq3:Li/MoO3 and Alq3:Li/HAT-CN. After analyzing the results of these devices, we found that the charge generating plays a major role in tandem OLED¡¦s performance. In other words, if the more carriers can be generated in the connecting layers, the higher power efficiency in tandem device can be realized.
95

Fabrication of Sb-doped CIGS by selenization of stacked elemental layer and thin solar cell

Jian, Chong-Yao 27 August 2012 (has links)
This study is using selenization of stacked elemental layers to form Cu(In,Ga)Se2(CIGS). In the process, use Cu/Sb/In/Ga/Se precursor to heat to 550 oC at Se vapor in vacuum chamber. From the result of XRD¡BRaman and EPMA, that show of the precursor do not form to CIGS. After that, The result of using different layers precursor to form CIGS show that only Cu/In/GaSe/Se reach to form CIGS, but it still has second phase. According to the literature¡Athe reason for the formation of CIGS selenide process due to interdiffusion caused the formation of ternary solid phase, the solid phase diffusion reaction could be hampered.And then change to use rapid thermal selenization to form CIGS with two step of heating (hold at 300 oC and 650 oC) at N2 atmosphere. The laminated follow the best results in the selenide process Cu/In/GaSe/Se precursors in Se atmosphere, the (112) preferred orientation is 26.8o-26.9o in the XRD results of the fixed process conditions. EPMA composition analysis and comparison of Ga actual amount will increase with the estimated value of the amount of increase(Estimated value 4atom% actual value 2atom%¡FEstimated value 9.2tom% actual value 10atom%¡AGa/¢»=0.32), but the composition has yet to amend. Then will join Sb on CIGS observed from the SEM results Sb does improve the CIGS thin film flatness as well as to help grain growth in rapid thermal selenization, grain size of about 1 to 3£gm.
96

Molecular level interactions of large area 2D materials

Na, Seung Ryul 10 August 2015 (has links)
Two-dimensional materials such as self-assembled monolayers (SAMs), graphene, etc. are candidate materials for improving the performance of microelectronics components and MEMS/NEMS devices. In view of their relatively large in-plane dimensions, surface forces are likely to dominate their behavior. The purpose of the current work was to extract not only the adhesion energy (or steady state fracture toughness) but also the traction-separation relation associated with interactions between various two-dimensional materials and substrates. In particular, interactions between SAMs terminated by carboxyl and diamine (COOH/NMe2) groups, hydroxylated silicon surfaces, graphene and silicon, graphene and its seed copper and graphene and epoxy over large areas was considered. Traction-separation relations, which are a continuum description of such molecular interactions, were determined by a direct method, which makes use of measurements of crack tip opening displacements; an inverse approach where the key parameters are extracted by comparing measured global parameters with finite element solutions and a hybrid approach in which the direct method was supplemented by finite element analysis. Furthermore, the surface free energy of graphene was measured by contact angle measurements. The most striking observation across all the interactions that were considered is that the interaction ranges were much larger than those attributed to van der Waals forces. While van der Waals models might have been at play between graphene and its seed copper foil and graphene and epoxy, the adhesion energies were surprisingly high. This coupled with the long interaction range suggests that roughness effects modulated the basic force field. Interactions between graphene and silicon and hydroxylated silicon surfaces may have been due to capillary and/or electrostatic again possibly modulated by roughness. The interactions between COOH and NMe2 SAMs became stronger under vacuum, which may have induced chemical bonding, and tougher under mixed-mode loading. / text
97

Investigation of the Sintering Fundamentals of Magnesium Powders

Burke, Paul 28 January 2011 (has links)
Magnesium and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy (P/M) can be used to alleviate the formability problem through near-net-shape processing. The surface layer on Mg powders acts as a barrier to diffusion and sintering is problematic. X-ray photoelectron spectroscopy (XPS) was used to identify the composition of the layer, as well as a focused ion beam (FIB) process for obtaining thin films was utilized to prepare samples for analysis with transmission electron microscopy (TEM). Sintering of pure magnesium compacts has been studied by differential scanning calorimetry (DSC), which identified several decomposition reactions during heating. It was also found that alloying additions of calcium and yttrium promote surface layer disruption during sintering by DSC measurements and testing indicates improved mechanical properties.
98

Tailoring the chemistry of gold surfaces with aryl Layers formed from diazonium cations

Shewchuk, Dwayne Unknown Date
No description available.
99

Boundary layers and wind in turbulent thermal convection

Wagner, Sebastian 26 June 2014 (has links)
No description available.
100

Boundary-layer flows in non-Newtonian fluids.

Dabrowski, Paul Peter January 2009 (has links)
We examine the boundary-layer flow of generalised Newtonian fluids. A specific member of this class of non-Newtonian fluids, namely the Ostwald-de Waele or power-law fluid, is studied in some detail. We show, through the numerical solution of the governing equations, that this empirical model of fluids encountered in physical and industrial situations is of limited benefit when considering the boundary-layer flow of such a fluid. We then develop and employ a Carreau viscosity model in the same context and show that the numerical marching scheme has better convergence behaviour than was the case for power-law fluids. We also investigate the boundary-layer flow of a Newtonian fluid over a thin film of non-Newtonian fluid, described by a Carreau fluid model, by focusing specifically on similarity-type solutions. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1456589 / Thesis (Ph.D.) - University of Adelaide, School of Mathematical Sciences, 2009

Page generated in 0.0268 seconds