• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of a low molecular weight Zn-containing protein population of lens tissue

Schwab, Susan J. January 1982 (has links)
Maintenance of reduced protein sulfhydryl groups is an important function of lens metabolism. In an attempt to inter-relate how lens sulfhydryl metabolism, low molecular weight peptides and trace molecular weight Zn-containing protein population was studied. The concentration of rate lens Zn-containing protein population was studied. The concentration of rat lens Zn decreased 30% from day 10 to day 35 postpartum. After 6 weeks on a low-Zn diet, rats had 25% less lens Zn than control groups. Selenite-induced cataract did not affect lens Zn concentration. Of the total lens Zn, 25% was recovered in the ultrafiltration fraction of less than 20,000 molecular weight which contained 1% of the total soluble protein. Lens tissue has low molecular weight TCA-soluble components that can bind Hg. Isoelectric points of low molecular weight protein fractions were between pI 5.2-5.5. Polypeptide molecular weight was determined to be less than 5,000 daltons by gel filtration chromatography. Aggregation on SDS-polyacrylamide gel electrophoresis yielded apparent higher molecular weights of these proteins. Although the proteins isolated had metallothionein-like character in that they were of low molecular weight, contained Zn and had acidic pI values, the paucity of cysteine residues indicates that metallothionein is not a component of low molecular weight Zn-containing lens proteins. / Master of Science

Page generated in 0.0624 seconds