• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of high fluence Ti ion implantation and vacuum carburization in steel

Rangaswamy, Mukundhan January 1985 (has links)
Concentration-versus-depth profiles have been calculated for Ti and C in Ti-implanted 52100 steel. A computer formalism was developed to account for diffusion and mixing processes, as well as sputtering and lattice dilation. A Gaussian distribution of Ti was assumed to be incorporated at each time interval. The effects of sputtering and lattice dilation were then included by means of an appropriate coordinate transformation. C was assumed to be gettered from the vacuum system in a one-to-one ratio with the surface Ti concentration up to a saturation point. Both Ti and C were allowed to diffuse. A series of experimental (Auger) concentration-versus-depth profiles of Ti implanted steel were analyzed using the above-mentioned assumptions. A best fit procedure for these curves yielded information on the values of the sputtering yield, range and straggling, as well as the mixing processes that occur during the implantation. The effective diffusivity of Ti was found to be 6x10⁻¹⁵ cm²/sec, a value that is consistent with the cascade mixing mechanism. The effective diffusivity of C was found 6x10⁻¹⁵ cm²/sec, and the sputtering yield by Ti atoms was best fit by a value of about 2. The observed range and straggling values were in very good agreement with the values predicted by existing theories, so long as the lattice was allowed to dilate. / M.S.

Page generated in 0.0516 seconds