• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of a fillet on a wing/body junction flow

Dewitz, Michael B. 21 July 2010 (has links)
Time-averaged properties of a wing-body-junction flow surrounding a cylindrical wing with a 1.5:1 elliptical nose and a NACA 0020 tail have been compared to those for the above wing with a 1.5 inch radius fillet normal to the wing's surface. An attempt was made to determine the effectiveness of the fillet in improving the uniformity of the wing-body junction flow downstream of the wing, and in attenuating the junction vortex. Measurements included oil-flow visualizations and surface-static-pressure measurements of the flattest floor surrounding the wings, and hot-wire anemometer measurements made in the flow downstream of the wing. Calculations of the drag and the volumetric entrainment of free-stream fluid due to the presence of the baseline wing and wing with fillet were performed. The results of these calculations are important criteria used to determine the effectiveness of the fillet as a flow control device. Results show that the vortex is present in each case, and its size is slightly larger for the wing with fillet as compared to the baseline wing. For each test case, the drag and volumetric entrainment of free-stream fluid were the nearly same for the wing with fillet as compared to the baseline wing. It was also found that increases in the boundary-layer thickness cause only small increases in the size of the junction vortex. The 1.5 inch radius fillet does not appear to be a viable flow control device. / Master of Science

Page generated in 0.0623 seconds