• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A generalized rule-based short-term load forecasting technique

Hazim, Ossama 07 April 2009 (has links)
A newly-developed technique for short-term load forecasting is generalized. The algorithm combines features from knowledge-based and statistical techniques. The technique is based on a generalized model for the weather-load relationship, which makes it site independent. Weather variables are investigated, and their relative effect on the load is reported. That effect is modeled via a set of parameters and rules that constitute the rule based technique. This technique is very close to the intuitive judgmental approach an operator would use to make his guess of the load. That is why it provides a systematic way for operator intervention if necessary. This property makes the technique especially suitable for application in conjunction with demand side management (DSM) programs. Moreover, the algorithm uses pairwise comparison to quantify the categorical variables, and then utilizes regression to obtain the least-square estimation of the load. Because it uses the pairwise comparison technique, it is fairly robust. Since the forecast does not depend on any preset model, the technique is inherently updatable. A generalized version of the technique has been tested using data from four different sites in Virginia, Massachusetts, Florida and Washington. The average absolute weekday forecast errors range from 1.30% to 3.10% over all four seasons in a year. Error distributions show that the errors are 5% or less around 91 % of the time. / Master of Science

Page generated in 0.0429 seconds