• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of tension and compression creep models for wood using the time-temperature superposition principle

Bond, Brian H. 31 October 2009 (has links)
To date there are no long-term creep models or practical methods to investigate the effect of creep on the safety and serviceability of modem wood structures and structural wood composites. Long-term creep models were developed for wood in tension and compression using the Time-Temperature Superposition Principle (TTSP). The principle states that the long-term response of a polymer at lower temperature is equivalent to the short-term response at a higher temperature. Accelerated creep tests were conducted in tension and compression using small clear specimens of Douglas-fir, southern pine and yellow-poplar. The specimens were tested at moisture contents of 6 %, 9 %, and 12 %, and at temperatures between 20°C and 80°C. The strain was measured using bonded strain gages. The individual creep compliance for each temperature was shifted along the log-time axis to obtain a "master" curve that describes the creep response of the specimens. All compliance curves also required vertical shifting. The experimental horizontal shift factors followed the Arrhenius formulation that describes the shift factor relation for polymers in the glassy region. / Master of Science

Page generated in 0.0624 seconds