• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of cascade-correlation neural networks to nonlinear system identification

Mueller, Klaus C. January 1994 (has links)
Much research in recent years has been done in applying artificial neural networks to the problem of nonlinear system identification. The most common neural network architecture, the multilayer feed-forward network, trained with the backpropagation algorithm, has been shown to be capable of universal function approximation which makes it applicable to a much wider range of problems than other nonlinear identification techniques. While these neural networks show great potential, they still suffer several drawbacks, such as slow convergence toward a solution. New neural network architectures have been proposed in an attempt to overcome these limitations. This study examines one such architecture, Cascade-Correlation, and its usefulness in system identification applications, particularly the nonlinear case. / M.S.

Page generated in 0.0526 seconds