• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ionic mobility and superplasticity in ceramics

Vilette, Anne L. 21 July 2009 (has links)
Superplasticity and superionic conductivity (SIC), both thermally activated processes, have been independently observed in certain materials with a high diffusion coefficient in high temperature ranges. Intuitively, this observation leads one to the idea that both types of behavior may be inter-related with one another. Therefore, it is the purpose of this research to investigate, specifically, the deformation characteristics of two SIC's, Bi₂O₃ and YSZ (yttria-stabilized zirconia), and to attempt a correlation of their behavior. Compressive deformation of these two materials was conducted over a wide range of temperatures and at various strain rates in an effort to characterize the temperature and/or strain-rate dependences of any observed superplasticity. Steady-state flow stress values were utilized to calculate the strain-rate sensitivity, m, of the materials, as well as the activation energies (Q<sub>C</sub>) of superplasticity. Next, the obtained values of Q<sub>C</sub>. were compared to SIC activation energies from the literature. Bi₂O₃ exhibited structural superplasticity within the range of test conditions utilized. However, published values of SIC activation energy were lower than experimentally derived Q<sub>C</sub> by a factor of four. Therefore, one is not able to state whether or not there is any correlation between the two behaviors. Unfortunately, YSZ exhibited brittle behavior over the entire temperature and strain-rate ranges, so the same analysis could not be performed. Furthermore, SEM micrographs showed that YSZ samples, as processed, did not possess the proper microstructure required for superplasticity. Hence, no final conclusions on YSZ can be drawn from this study. / Master of Science

Page generated in 0.0474 seconds