• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material process monitoring with optical fiber sensors

Burford, Mary Kathleen 07 October 2005 (has links)
Our motivation for this work is based on the need to monitor the cure and inservice health of composite materials. We describe the continuation of an effort to design a multi-functional fiber optic sensor which can be embedded in polymeric composite laminates for monitoring the degree of cure during its fabrication, as well as internal composite strains occurring post-cure.3 In short, this dual-purpose sensor combines the characteristics of a Fresnel reflectometer with those of the extrinsic Fabry-Perot interferometer. For monitoring cure, a broadband source is used so the output intensity of the sensor is amplitude-modulated as the refractive index of the composite is increased during the polymerization process. Post-cure, a coherent light source is implemented so a. sinusoidal variation of the output signal occurs when strains within the composite cause the sensor output to be phase-modulated. We demonstrate the measurement of refractive index with the Fresnel reflectometer/EFPL and test it as an embedded refractive index monitor. Our experimental results demonstrate that the refractive index of 5-minute epoxy increases by approximately 2 % during the cure process. In addition, the sensor can be used as an interferometer to measure internal composite strains, where the phase difference between consecutive fringe peaks is one-half the wavelength of the source. / Master of Science

Page generated in 0.0498 seconds